K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

Hỏi đáp Toán

Giả sử AH cắt MN tại I và hình vuông MNPQ có cạnh bằng x \(\Rightarrow MN=IH\)

Vì MN // BC \(\Rightarrow\) tam giác AMN ~ ABC

\(\Rightarrow\dfrac{MN}{BC}=\dfrac{AM}{AB}\) (1)

Xét hai tam giác vuông AMI và ABH có :

\(\widehat{A}\) là góc chung

\(\widehat{AIM}=\widehat{AHB}\)

\(\Rightarrow\) tam giác AMI ~ ABH\(\Rightarrow\dfrac{AM}{AB}=\dfrac{AI}{AH}\) (2)

Từ \(\left(1\right)\)\(\left(2\right)\) \(\Rightarrow\dfrac{MN}{BC}=\dfrac{AI}{AH}\)

Mà AI = AH - IH = AH - MN \(\Rightarrow\dfrac{MN}{15}=\dfrac{10-MN}{10}\Rightarrow2MN=30-3MN\Rightarrow5MN=30\Rightarrow MN=6cm\)Vậy \(MN=NP=PQ=QN=6cm\)

16 tháng 4 2017

tk ủng hộ mk nha mọi người

5 tháng 7 2017

Bạn có giải bài đâu mà đòi các bạn khác tk

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra: \(MN=\dfrac{BC}{2}=10\left(cm\right)\)

Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của...
Đọc tiếp

Câu 1: Cho tam giác ABC vuông tại A ,đường cao AH 

a) Cho biết HB=9cm,HC=16cm.Tính các độ dài AH,AB=AC 

b) Chứng minh các hệ thức AH2=HB.HC,AB2=BC.BH 

Câu 2: Tam giác ABC vuông tại A, đường cao AH, HB=4cm,HC=9cm.Gọi M là trung điểm của BC. Tính các cạnh của tam giác AHM .

Câu3: Cho tam giác ABC vuông tại A . Hình vuông MNPQ có M thuộc cạnh AB,N thuộc cạnh AC ,P và Q thuộc cạnh BC . Biết BQ=4cm,CP=9cm. Tính cạnh của hình vuông. 

Câu 4: Tam giác ABC đường cao AH (H thuộc cạnh BC) có AH=6cm,BH=4cm,HC=9cm. Chứng minh rằng: 

a) Tam giác AHB đồng dạng với tam giác CHA .

b) BAC = 90o 

Câu 5: Cho tam giác ABC, các đường cao BD và CE. Chứng minh rằng : AE.AB=AD.AC 

Câu 6: Cho hình thang ABCD (AB//CD) , M là trung điểm của AD,H là hình chiếu của M ten BC. Chứng minh rằng:Diện tích hình thang bằng tích BC.MH bằng cách vẽ đường cao BK, gọi N là trung điểm của BC và tìm các tam giác đồng dạng 

Câu 7: Cho tam giác nhọn ABC , các đường cao BD và CE cắt nhau ở H . Gọi K là hình chiếu của H trên BC . Chứng minh rằng : 

a) BH.BD=BK.BC

b) CH.CE=CK.CB

c) BH.BD+CH.CE=BC2 

Câu 8: Cho hình bình hành ABCD (A<B) . Gọi E là hình chiếu của C trên AB, K là hình chiếu của C trên AD, H là hình chiếu của B trên AC. Chứng minh rằng : 

a) AB.AE=AC.HC

b) BC. AK=AC.HC

c) AB.AE+AD.AK=AC2 

3
13 tháng 7 2015

sao nhiều quá vậy cậu dăng như này nhìn đã thấy ngán rồi chẳng ai làm đâu

19 tháng 6 2016

nhieu

6 tháng 4 2018

đây là toán lp 9 mak

6 tháng 4 2018

câu hỏi của cậu giống toán lớp 9 có phải là toán lowps đâu cậu bảo