K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét \(\Delta AMB\)và \(\Delta AMC\)có:

          AB = AC (gt)

          \(\widehat{BAM}=\widehat{CAM}\)(AM là tia phần giác của góc A)

          AM là cạnh chung

\(\Rightarrow\Delta AMB=\Delta AMC\left(c.g.c\right)\)

b) Ta có: \(\Delta AMB=\Delta AMC\)(theo a)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)(2 góc tương ứng)

Mà \(\widehat{AMB}+\widehat{AMC}=180^o\)(2 góc kề bù)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)

\(\Rightarrow AM\perp BC\)

Lại có: \(IH\perp BC\Rightarrow AM//IH\)

\(\Rightarrow\widehat{BIH}=\widehat{BAM}\)(2 gó so le trong)

Mà \(\widehat{BAM}=\frac{1}{2}\cdot\widehat{BAC}\)(AM là tia p/g của góc A)

\(\Rightarrow\widehat{BIH}=\frac{1}{2}\cdot\widehat{BAC}\)

hay \(\widehat{BAC}=2\widehat{BIH}\)

5 tháng 6 2016

Tam giác ABC có AB = AC (gt) => tam giác ABC cân tại A

=> tia phân giác góc A là AM vuông góc với cạnh BC (trong 1 tam giác cân, tia phân giác góc ở đỉnh cũng là đường vuông góc với cạnh đáy của tam giác đó) (khúc này nếu thầy bạn không có dạy thì nhắn tin cho mình để mình chứng minh vuông góc bằng hai tam giác bằng nhau)

Ta có: IH vuông góc BC (gt) (1)

          AM vuông góc BC (cmt) (2)

=> Từ (1)(2) suy ra: IH // AM (cùng vuông góc với BC)

=> góc BIH = góc BAM (đồng vị)

Mà góc BAM = 2 lần góc BAC (do tia AM là tia phân giác)

=> góc BIH = 2 lần góc BAC

Vậy góc BIH = 2 lần góc BAC

b: Ta có: ΔBAC cân tại A

mà AM là đường phân giác

nên M là trung điểm của BC

16 tháng 12 2015

it so hard 

it very hard to me

19 tháng 1 2021

a, xét △ AMB và △ AMC có:

                AB=AC(gt)

                góc BAM=góc CAM (gt)

                AM chung

=> △ AMB= △ AMC(c.g.c)

b,xét △ AHM và △ AKM có:

                AM cạnh chung

                góc HAM=ˆgóc KAM (gt)

=>△ AHM= △ AKM(CH-GN)

=> AH=AK

c,gọi I là giao điểm của AM và HK

xét △ AIH và △ AIK có:

            AH=AK(theo câu b)

            góc AIH=ˆgóc AIK (gt)

            AI chung

=> △ AIH=△ AIK (c.g.c)

=> góc AIH=ˆgóc AIK 

mà góc AIH+góc AIK=180độ(2 góc kề bù)

=> HK ⊥ AM

19 tháng 1 2021

Cho 1000 like & 1000 ❤

20 tháng 2 2019

a) C/M ΔAMB=ΔAMC

Ta có ∠BAM=∠MAC (gt)

AB=AC (gt)

∠ABM=∠ACM (ΔABC cân)

Vậy ΔAMB=ΔAMC (g-c-g)

b) C/M M trung điểm BC

Vì ΔABC cân tại A (do AB=AC:gt)

Có AM là đường cao

Nên AM cũng là trung tuyến

Vậy M trung điểm BC

a, vì AM là tpg của A nên BAM=CAM

xét tam giác AMB & AMC có: BAM=CAM(cmt); AB=AC( tam giác ABC cân tại A); góc B=C( tam giác ABC cân tại A)

=> tam giác AMB=AMC(g.c.g)

b,vì tam giác AMB=AMC nên  góc AMB=AMC

mà AMB+AMC=1800( 2 góc kề bù)=> AMB=AMC=900=> AM vuông góc với BC

vì tam giác AMB=AMC nên BM=CM(2 cạnh tương ứng)

=> BM=CM=BC:2=3 cm

theo định lí PTG, ta có:

AM2+BM2=AB2

hay AM2= AB2- BM2

<=>AM2=52-32=16

=> AM= 4 cm.

c, xét tam giác BHM và CHM: BM=CM(cmt); góc HMB=HMC(=900); HM là cạnh chung=> tam giác BHM=CHM(c.g.c)=>HB=HC(tương ứng)

xét tam giác HBC có HB=HC(cmt) do đó tam giác HBC cân tại H.

10 tháng 12 2017

a/ xét tam giác ABM và tam giác ACM

có : AB = AC (gt)

      góc BAM = góc CAM (vì AM là tia phân giác của góc BAC)

      AM chung 

      do đó tam giac AMB = AMC (c-g-c)