Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 7: Sửa đề; AB=12cm; BC=20cm
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=20^2-12^2=256\)
=>AC=16(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH\cdot20=12^2=144\)
=>BH=144/20=7,2(cm)
b: ΔAHC vuông tại H
=>\(AH^2+HC^2=AC^2\)
=>\(AH^2=AC^2-HC^2\left(1\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(HB\cdot HC=AC^2-HC^2\)
Bài 8:
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=15^2-9^2=144\)
=>\(AC=\sqrt{144}=12\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BH\cdot BC=BA^2\)
=>\(BH\cdot15=9^2=81\)
=>BH=81/15=5,4(cm)
b: Sửa đề: Kẻ tia phân giác AM của góc BAC. Tính diện tích tam giác ABM
Xét ΔABC có AM là phân giác
nên \(\dfrac{MB}{MC}=\dfrac{AB}{AC}=\dfrac{9}{12}=\dfrac{3}{4}\)
=>\(\dfrac{MC}{MB}=\dfrac{4}{3}\)
=>\(\dfrac{MC+MB}{MB}=\dfrac{4}{3}+1=\dfrac{7}{3}\)
=>\(\dfrac{BC}{MB}=\dfrac{7}{3}\)
=>\(\dfrac{MB}{BC}=\dfrac{3}{7}\)
=>\(\dfrac{S_{AMB}}{S_{ABC}}=\dfrac{3}{7}\)
=>\(S_{AMB}=\dfrac{3}{7}\cdot S_{ABC}=\dfrac{3}{7}\cdot\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{3}{14}\cdot9\cdot12\)
=>\(S_{AMB}=\dfrac{162}{7}\simeq23,1\left(cm^2\right)\)
hình :
A B C H E F 3 4 5
a) ta có : \(AB^2+AC^2=3^2+4^2=25=5^2=BC^2\)
\(\Rightarrow AB^2+AC^2=BC^2\) (đúng với định lí pitago)
\(\Rightarrow\) tam giác ABC là tam giác vuông
vậy tam giác ABC là tam giác vuông (đpcm)
b) áp dụng hệ thức lượng trong tam giác vuông cho tam giác vuông ABC
ta có \(AB.AC=BC.AH\Leftrightarrow3.4=5.AH\Rightarrow AH=\dfrac{3.4}{5}=\dfrac{12}{5}\)
vậy \(AH=\dfrac{12}{5}\)
c) xét \(\Delta\) \(BEH\) và \(\Delta\) \(HFC\)
ta có : \(\widehat{EBH}=\widehat{FHC}\) (AP//FH)
\(\widehat{FCH}=\widehat{EHB}\) (AC//EH)
\(\Rightarrow\) \(\Delta BEH\) đồng dạng \(\Delta HFC\) \(\Leftrightarrow\dfrac{BE}{HF}=\dfrac{HB}{HC}\)
\(\Leftrightarrow BE.HC=HB.HF\)
Akai HarumaMysterious PersonAce LegonaNguyễn Đình Dũng Hung nguyen
Xin anh Hung Nguyen đừng kiêu ngạo nhé có khi anh giải k ra đó
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot5=3\cdot4=12\)
hay AH=2,4cm