Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có
AC-AB<BC<AB+AC
\(\Leftrightarrow10-5< BC< 10+5\)
\(\Leftrightarrow5< BC< 15\)
\(\Leftrightarrow BC\in\left\{6;7;8;9;10;11;12;13;14\right\}\)
Vậy: BC có thể nhận được 14-6+1=9(giá trị)
Gọi độ dài cạnh AC là x (x>0). Theo bất đẳng thức tam giác ta có:
4 − 1 < x < 4 + 1 ⇔ 3 < x < 5 Vì x là số nguyên nên x = 4. Vậy độ dài cạnh AC = 4cm
Chọn đáp án D.
Xét ΔABC có AC-BC<AB<AC+BC
=>5<AB<7
=>AB=6cm
=>ΔABC cân tại A
5<BC<7
=> BC=6(cm) ( vì BC là số nguyên )
=> tam giác ABC là tam giác cân
Xét ΔABC có
AC-AB<BC<AC+AB
\(\Leftrightarrow6-1< BC< 6+1\)
\(\Leftrightarrow5< BC< 7\)
hay BC=6(cm)
Áp dụng bất đẳng thức tam giác trong tam giác ABC, ta có:
4 – 1 < CA < 4 + 1
3 < CA < 5
Mà CA là số nguyên
CA = 4 cm.
Vậy CA = 4 cm.
Nguyễn Anh Đức
Bài này có thể phải dùng đến BĐT tam giác ; em đã học loại BĐT này chưa ?
Theo BĐT \(\Delta\): \(AB+AC>BC\)
Thay số : AB = 4cm; AC = 6cm
\(\Rightarrow4+6>BC\Rightarrow10>BC\)(1)
cũng theo Theo BĐT \(\Delta\); có :
\(AC-AB< BC\)
Thay số : AB = 4cm; AC = 6cm
\(6-4< BC\Rightarrow2< BC\)(2)
Từ 1 và 2
=> \(2cm< BC< 10cm\)