Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tam giác AIB và tam giác AIC
AB=AC(do tam giác ABC cân)
B=C(do tam giác ABC cân)
AI là cạnh chung
\(\Rightarrow\)tam giác AIB = tam giác AIC(c.g.c)
b)Vì tam giác AIB = tam giác AIC(c.g.c)
\(\Rightarrow\)AIB=AIC(cặp góc tương ứng)
Mà AIB+AIC=1800(kề bù)
\(\Rightarrow\)AIB=AIC=1800:2=900
Do đó AI\(\perp\)BC
Vậy AI là đường cao của tam giác AIC
Bài này lớp 6 cũng làm được bạn ạ quá dễ
Bài 17 :Cho tam giác ABC cân tại A. Gọi M,N lần lượt là trung điểm của AB,AC. Chứng minh : a) MN // BC b) BN=CM Bài 18 : Cho tam giác ABC cân tại A. Gọi M,N tk nha
a) Ta có: \(AM=MB=\dfrac{AB}{2}\)(M là trung điểm của AB)
\(AN=NC=\dfrac{AC}{2}\)(N là trung điểm của AC)
mà AB=AC(ΔABC cân tại A)
nên AM=MB=AN=NC
Xét ΔABN và ΔACM có
AB=AC(ΔABC cân tại A)
\(\widehat{BAN}\) chung
AN=AM(cmt)
Do đó: ΔABN=ΔACM(c-g-c)
b) Xét ΔANM có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
hay \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đoc của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)
mà \(\widehat{AMN}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)
A B C I M N
a, xét tam giác ABC cân tại A (gt)
AI _|_ BC (gt)
=> AI đồng thời là đường trung tuyến của tam giác ABC (đl)
=> I là trung điểm của BC (đn)
b, tam giác ABC vuông cân tại A (gt)
=> góc ABC = 45 (đl)
xét tam giác AIB vuông tại I
=> tam giác AIB vuông cân
AIC tương tự
c, AM + MB = AB
AN + NC = AC
AM = NC (gt)
AB = AC do tam giác ABC cân (gt)
=> MB = AN (1)
BI = IC do I là trung điểm của BC (câu a)
IC = AI do tam giác IAC cân (câu b)
=> BI = AI (2)
xét tam giác MBI và tam giác NAI có góc MBI = NAI = 45 (3)
(1)(2)(3) => tam giác MI = tam giác NAI (c-g-c)
d, góc AIB = 90 => góc BIM + góc MIA = 90
tam giác MI = tam giác NAI => góc BIM = góc AIN (đn)
=> góc AIN + góc MIA = 90
=> góc MIN = 90
tam giác MI = tam giác NAI => NI = IM (đn)
=> tam giác MIN vuông cân tại I (dh)
A B C I 1 2
Cm: a) Xét t/giác AIB và t/giác AIC
có AB = AC (gt)
BI = CI (gt)
AI : chung
=> t/giác AIB = t/giác AIC (c.c.c) (Đpcm)
b) Do I là trung điểm của BC => IB = IC
Ta có : t/giác AIB = t/giác AIC (cmt)
=> góc A1 = góc A2 (hai góc tương ứng)
=> AI là tia p/giác của góc A
=> góc A1 = góc A/2
hay góc BAI = 1/2 góc BAC (Đpcm)
Sao lại gọi I là trung điểm của góc B -_-
Sai đầu bài rồi ạ
Sửa lại mình làm giúp
\(Xét.\Delta AIB.và.\Delta AIC.có:\\ AB=AC\\ AI.chung\\ IB=IC\\ Vậy.\Delta AIB=\Delta AIC\left(c.c.c\right)\)
- Câu dễ thì làm được nhỉ :)?