Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) BE = DC, ΔBEC = ΔCDB.
Vì ΔABC cân tại A nên: AB = AC.
Ta lại có: AB = AE + EB mà AE = EB (gt)
AC = AD + DC mà AD = DC (gt)
⇒ AE = EB = AD = DC
Vậy BE = DC.
Xét ΔBEC và ΔCDB có:
BE = CD (cmt)
∠ABC = ∠ACB (ΔABC cân)
BC : cạnh chung.
Do đó: ΔBEC = ΔCDB (c.g.c)
b) ΔBGC cân.
Vì ΔBEC = ΔCDB (câu a)
⇒ ∠ECB = ∠DBC (hai góc tương ứng)
⇒ ΔBGC cân tại G.
Câu c và hình chờ xíu :v
c) BC <4GD
Kẻ trung tuyến AG ⇒ G là trọng tâm của ΔABC, mà ΔABC cân (gt) ⇒ AG là phân giác của ∠BAC (∠A1 = ∠A2)
AG cắt BC tại H (HB = HC)
Xét ΔABH và ΔACH có:
AB = AC (gt)
BH = HC (cmt)
AH : chung
Do đó: ΔABH = ΔACH (c.c.c)
⇒ ∠H1 = ∠H2 (hai góc tương ứng) Mà ∠H1 + ∠H2 = 180o
⇒ ∠H1 = ∠H2 = 180o : 2 = 90o hay AH ⊥ BC.
Vì ΔBGC cân tại G nên: GB = GC (hai cạnh đáy) Mà GB = 2GD
⇒ 4GD = DB + GC.
Xét ΔBGH vuông tại H, ta có: BG > BH (định lí) (1)
Xét ΔCGH vuông tại H, ta có: CG > CH (định lí) (2)
Từ (1) và (2) suy ra: BG + CG > BH + CH
Mà GB + CG = 4GD (cmt) và CB = BH + CH
⇒ 4GD > BC
Câu a ) - Chứng minh tam giác vuông ABD = tam giác vuông ACE ( cạnh huyền - góc nhọn ) => Tự chứng minh
Câu b ) - Vì tam giác vuông ABD = tam giác vuông ACE ( ở câu a )
=> Góc B1 = góc C1 ( 2 góc tương ứng )
- Vì tam giác ABC là tam giác cân => góc B = góc C
Ta có góc B1 + góc B2 = góc C1 + C2
=> Góc B2 = góc C2
- Vậy tam giác HBC là tam giác cân
Câu c )
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔAEC
=>BD=CE
b: góc ABD=góc ACE
=>góc HBC=góc HCB
=>ΔHBC cân tại H
c: AB=AC
HB=HC
=>AH là trung trực của BC
Đáp án:a) Xét 2 tam giác ABD và ACD có:
góc BAD = góc CAD( AD là tia phân giác của tg ABC)
AB= AC( tg ABC cân tại A)
góc ABC= góc ACB( tg ABC cân tại A)
=> tg ABD = ACD(gcg)
b) xét ABM và CGM
=> 2 tg bằng nhau theo TH (cgc)
=> AP=CG
c)Ta có : MG = MP (1)
Ta lại có: PAM = GCM(cmt)
mà GCM = GAM ( tg AGC cân tại G do tính chất đường trung tuyến)
=> AM là tia phân giác của tg GAP(2)
(1),(2)=> AM vừa là đường trung tuyến vừa là tia phân giác của tg PAG
Hay tg PAG là tg cân
Hình bạn tự vẽ nha