K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2019

a) BE = DC, ΔBEC = ΔCDB.

Vì ΔABC cân tại A nên: AB = AC.

Ta lại có: AB = AE + EB mà AE = EB (gt)

AC = AD + DC mà AD = DC (gt) 

⇒ AE = EB = AD = DC

Vậy BE = DC.

Xét ΔBEC và ΔCDB có:

BE = CD (cmt)

∠ABC = ∠ACB (ΔABC cân)

BC : cạnh chung.

Do đó: ΔBEC = ΔCDB (c.g.c)

b) ΔBGC cân.

Vì ΔBEC = ΔCDB (câu a) 

⇒ ∠ECB = ∠DBC (hai góc tương ứng)

⇒ ΔBGC cân tại G.

Câu c và hình chờ xíu :v  

28 tháng 4 2019

c) BC <4GD

Kẻ trung tuyến AG ⇒ G là trọng tâm của ΔABC, mà ΔABC cân (gt) ⇒ AG là phân giác của ∠BAC (∠A1 = ∠A2

AG cắt BC tại H (HB = HC)

Xét ΔABH và ΔACH có:

AB = AC (gt)

BH = HC (cmt)

AH : chung

Do đó: ΔABH = ΔACH (c.c.c)

⇒ ∠H1 = ∠H2 (hai góc tương ứng) Mà ∠H1 + ∠H2 = 180o

⇒ ∠H1 = ∠H2 = 180o : 2 = 90o hay AH ⊥ BC.

Vì ΔBGC cân tại G nên: GB = GC (hai cạnh đáy) Mà GB = 2GD 

⇒ 4GD = DB + GC.

Xét ΔBGH vuông tại H, ta có: BG > BH (định lí) (1)

Xét ΔCGH vuông tại H, ta có: CG > CH (định lí) (2)

Từ (1) và (2) suy ra: BG + CG > BH + CH

Mà GB + CG = 4GD (cmt) và CB = BH + CH

⇒ 4GD > BC 

a: Xét ΔEBC và ΔDCB có

EB=DC
góc B=góc C

BC chung

Do đó: ΔEBC=ΔDCB

b: Xét ΔGBC có góc GBC=góc GCB

nên ΔGBC cân tạiG

1 tháng 2 2019

A B C D E H 1 2 3 4

GT tam giác ABC cân 

\(\widehat{A}< 90^o\)

\(BD\perp AC\left(D\in AC\right)\)

\(CE\perp AB\left(E\in AB\right)\)

BD và CE cắt nhau tại H

KL : BD = CD

tam giác BHC cân

AH là đường trung trực của BC

a) Xét tam giác BDC và tam giác CEB có

\(\widehat{BDC}=\widehat{CEB}=90^o\)

BC cạnh chung

\(\widehat{H_1}=\widehat{H_3}\)( 2 góc kề bù )

=> tam giác BDC = tam giác CEB  (g-c-g)

=> BD = CE ( 2 cạnh tương ứng )

b) Vì tam giác ABC là tam giác cân

=> \(\widehat{B}=\widehat{C}\)

Vì \(\widehat{B}=\widehat{C}\)

=> tam giác BHC cân

c) Kẻ AH

chép tại https://olm.vn/hoi-dap/detail/79620623509.html :v 

1 tháng 2 2019

Mình cần viết GT-KL 

1 tháng 5 2018

ai lamf  

A) Vì ΔABC cân tại A nên AB = AC

Ta có: AB = EB + AE mà AE = EB (gt)

          AC = AD + DC mà AD = DC (gt)

==> BE = DC

Xét ΔBEC và ΔCDB ta có

         BE = DC (cmt)

         BC chung

         ∠ABC = ∠ACB (gt)

==> ΔBEC = ΔCDB (c-g-c)