Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: AF = AE => AFE là \(\Delta\) cân
=> ^E = ^F
Lại có: ^E + ^F = 1800 - ^A
hay 2^E = 1800 - ^A
^B + ^C = 1800 - ^A
hay 2^B = 1800 - ^A
=> 2^B = 2^E
=> ^B = ^E
Mà: 2 góc này nằm ở vị trí đồng vị => EF // BC
=> BEFC là hình thang
Có: ^B = ^C => BEFC là hình thang cân
b) Ta có: MN // BC (do MN là đg trung bình của \(\Delta\) IBC)
EF // BC (cmt)
=> MN//EF
=> MNFE là hình thang (1)
Ta dễ dàng chứng mình đc \(\Delta\) EFC = \(\Delta\) FEB (c.g.c)
=> ^FCE = ^EBF
Mà : ^ACB = ^ABC
=> ^ACB - ^FCE = ^ABC - ^EBF
hay ^ECB = ^FBC
=> \(\Delta\) IBC cân tại I => IB = IC => MB = NC
Xét \(\Delta\) FCN và \(\Delta\) EBM có:
FC = EB (BEFC là HT cân)
^FCN = ^EBM (cmt)
CN = BM (cmt)
=> \(\Delta\) FCN = \(\Delta\) EBM (c.g.c)
=> ^CFN = ^BEM
Mà: ^CFE = ^BEF
=> ^CFE - ^CFN = ^BEF - ^BEM
hay ^NFE = ^MEF (2)
Từ 1 và 2 => MNFE là hình thang cân
tk
Giải thích các bước giải:
a, E là trung điểm của AB, F là trung điểm của AC ⇒ EF là đường trung bình của ΔABC
⇒ EF ║ BC ⇒ Tứ giác BEFC là hình thang
ΔABC cân tại A ⇒ ˆBB^ = ˆCC^
Hình thang BEFC có 2 góc kề 1 cạnh đáy bằng nhau
⇒ BEFC là hình thang cân (đpcm)
b, ΔABC cân tại A có AH là trung tuyến ⇒ AH cũng là đường cao hay AH ⊥ HC
Tứ giác AHCD có 2 đường chéo AC, HD cắt nhau tại F là trung điểm của mỗi đường
⇒ AHCD là hình bình hành mà AH ⊥ HC ⇒ AHCD là hình chữ nhật (đpcm)
c, AHCD là hình chữ nhật ⇒ AD ║ CH và AD = CH mà HB = HC ⇒ AD ║ HB và AD = HB
⇒ Tứ giác ABHD là hình bình hành ⇒ AH, BD giao nhau tại trung điểm của mỗi đường
Mặt khác ta có I là trung điểm của AH (Vì I ∈ EF là đường trung bình của ΔABC)
nên I cũng là trung điểm của BD hay B, I, D thẳng hàng (đpcm)
a: Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: EF là đường trung bình
=>EF//BC
Bài 1 :
B A C H K E D M N
a) Ta có : \(\hept{\begin{cases}AM=MB\\AN=NC\end{cases}\Rightarrow}\)MN là đường trung bình tam giác ABC \(\Rightarrow MN\text{//}BC\) hay \(MN\text{//}HK\left(1\right)\)
Dễ thấy MNKB là hình bình hành => \(\widehat{MNK}=\widehat{ABC}=\widehat{MHB}\)(Vì tam giác AHB vuông có HM là đường trung tuyến ứng với cạnh huyền.) . Mặt khác : \(\widehat{MNK}=\widehat{CKN}\)(hai góc ở vị trí so le trong)
=> \(\widehat{MHB}=\widehat{CKN}\). Mà hai góc này lần lượt bù với \(\widehat{MHK}\)và \(\widehat{HKN}\)=> \(\widehat{MHK}=\widehat{HKN}\) (2)
Từ (1) và (2) suy ra MNKH là hình thang cân.
b) Dễ thấy HK là đường trung bình tam giác AED => HK // ED hay BC // ED (3)
Tương tự , MH và NK lần lượt là các đường trung bình của các tam giác ABE và ACD
=> BE = 2MH ; CD = 2NK mà MH = NK (MNKH là hình thang cân - câu a)
=> BE = CD (4)
Từ (3) và (4) suy ra BCDE là hình thang cân.
A B C D E N M P
Bài 2 :
a) Ta có : \(\widehat{BAD}=\widehat{CAE}=90^o\Rightarrow\widehat{BAD}+\widehat{DAE}=\widehat{CAE}+\widehat{DAE}\Rightarrow\widehat{BAE}=\widehat{CAD}\)
Xét tam giác BAE và tam giác CAD có : \(AB=AD\left(gt\right)\); \(AC=AE\left(gt\right)\) ; \(\widehat{BAE}=\widehat{CAD}\left(cmt\right)\)
\(\Rightarrow\Delta BAE=\Delta CAD\left(c.g.c\right)\Rightarrow CD=BE\)
b) Dễ dàng chứng minh được MP và PN lần lượt là các đường trung bình của các tam giác ACD và tam giác BEC
=> MP = 1/2CD ; PN = 1/2 BE mà CD = BE => MP = PN => tam giác MNP cân tại P
Để chứng minh góc MPN = 90 độ , hãy chứng minh BE vuông góc với CD.
a: Xét ΔABC có
D là trung điểm của BC
F là trung điểm của AC
Do đó: DF là đường trung bình của ΔABC
Suy ra: DF//AB
hay ABDF là hình thang
a) Ta có : EF//BC(gt)
\(\widehat{B}=\widehat{C}\)(tg ABC cân A)
=> BFEC là hình thang cân (đccm)
b) Do FI=IB (gt)
EK=KC(gt)
=> IK là đường trung bình của hthang BFEC
=> IK=(BC+EF):2
=> 7,5=(BC+EF):2
=> BC+EF=15
Mà \(FE=\frac{BC}{2}\)(EF là đường tb tg ABC)
=> EF=15:(1+2)x1=5cm
BC=5x2=10cm
- Có : BD=CD=BC:2=5cm
- Xét tg ABD vuông D (tg ABC cân, BD=DC=> AD vuông BC), có :
AB2=BD2+AD2 (pytago)
=>AB2=52+122
=> AB2=169
=> AB=13cm
- Có : FB=AB:2=6,5cm
- Tứ giác BFEC có : FB=EC=6,5cm
Chu vi BFEC là : EF+BC+FB+EC=5+10+6,5+6,5=28cm
Vậy:.....
#H
a) Vì AE = FA ( gt)
=> ∆AEF cân tại A
=> AEF = \(\frac{180°\:-\:BAC}{2}\)
Vì ∆ABC cân tại A
=> ABC = \(\frac{180°\:-\:BAC}{2}\)
=> ABC = AEF
Mà 2 góc này ở vị trí đồng vị
=> FE//BC
=> FEBC là hình thang
Mà ∆ABC cân tại A
=> ABC = ACB
=> FEBC là hình thang cân (dpcm)
b) Vì ∆ABC cân tại A
=> AB = AC
Mà AE = FA
=> EB = FC
Mà FEBC là hình thang cân
=> EC = FB ( tính chất)
Xét ∆ECB và ∆FBC ta có :
BC chung
EC = FB
ABC = ACB
=> ∆ECB = ∆FBC (c.g.c)
=> BEC = CFB ( tương ứng)
Xét ∆EIB và ∆FIC ta có :
EB = FC (cmt)
BEC = CFB (cmt)
EIB = FIC ( đối đỉnh)
=> ∆EIC = ∆FIC (g.c.g)
=> IB = IC ( tương ứng)
=> ∆IBC cân tại I
=> IBC = ICB
Vì M là trung điểm IB
N là trung điểm IC
=> MN là đường trung bình ∆IBC
=> MN //BC
=> MNCB là hình thang
Mà IBC = ICB (cmt)
=> MNCB là hình thang cân