K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2021

tk

Giải thích các bước giải:

a, E là trung điểm của AB, F là trung điểm của AC ⇒ EF là đường trung bình của ΔABC
⇒ EF ║ BC ⇒ Tứ giác BEFC là hình thang

ΔABC cân tại A ⇒ ˆBB^ = ˆCC^

Hình thang BEFC có 2 góc kề 1 cạnh đáy bằng nhau

⇒ BEFC là hình thang cân (đpcm)

b, ΔABC cân tại A có AH là trung tuyến ⇒ AH cũng là đường cao hay AH ⊥ HC

Tứ giác AHCD có 2 đường chéo AC, HD cắt nhau tại F là trung điểm của mỗi đường

⇒ AHCD là hình bình hành mà AH ⊥ HC ⇒ AHCD là hình chữ nhật (đpcm)

c, AHCD là hình chữ nhật ⇒ AD ║ CH và AD = CH mà HB = HC ⇒ AD ║ HB và AD = HB

⇒ Tứ giác ABHD là hình bình hành ⇒ AH, BD giao nhau tại trung điểm của mỗi đường

Mặt khác ta có I là trung điểm của AH (Vì I ∈ EF là đường trung bình của ΔABC)

nên I cũng là trung điểm của BD hay B, I, D thẳng hàng (đpcm)

a) Vì AE = FA ( gt)

=> ∆AEF cân tại A 

=> AEF = \(\frac{180°\:-\:BAC}{2}\)

Vì ∆ABC cân tại A 

=> ABC = \(\frac{180°\:-\:BAC}{2}\)

=> ABC = AEF 

Mà 2 góc này ở vị trí đồng vị 

=> FE//BC 

=> FEBC là hình thang

Mà ∆ABC cân tại A 

=> ABC = ACB 

=> FEBC là hình thang cân (dpcm)

b) Vì ∆ABC cân tại A 

=> AB = AC 

Mà AE = FA 

=> EB = FC 

Mà FEBC là hình thang cân 

=> EC = FB ( tính chất) 

Xét ∆ECB và ∆FBC ta có : 

BC chung 

EC = FB 

ABC = ACB 

=> ∆ECB = ∆FBC (c.g.c)

=> BEC = CFB ( tương ứng) 

Xét ∆EIB và ∆FIC ta có : 

EB = FC (cmt)

BEC = CFB (cmt)

EIB = FIC ( đối đỉnh) 

=> ∆EIC = ∆FIC (g.c.g)

=> IB = IC ( tương ứng) 

=> ∆IBC cân tại I 

=> IBC = ICB

Vì M là trung điểm IB 

N là trung điểm IC 

=> MN là đường trung bình ∆IBC 

=> MN //BC 

=> MNCB là hình thang 

Mà IBC = ICB (cmt)

=> MNCB là hình thang cân 

24 tháng 12 2021

a: Xét ΔABC có

E là trung điểm của AB

F là trung điểm của AC

Do đó: EF là đường trung bình

=>EF//BC

24 tháng 12 2021

còn những câu sau thì s ạ?

 

a: Xét ΔABC có 

D là trung điểm của BC

F là trung điểm của AC

Do đó: DF là đường trung bình của ΔABC

Suy ra: DF//AB

hay ABDF là hình thang

loading...  loading...  loading...  

7 tháng 10 2021

\(a,\left\{{}\begin{matrix}AE=EB\\AF=FC\end{matrix}\right.\Rightarrow EF\) là đtb tam giác ABC

\(\Rightarrow EF//BC\Rightarrow BEFC\) là hthang 

\(b,EF//BC\Rightarrow EF//GH\Rightarrow EFGH\) là hthang

Có HF là trung tuyến ứng cạnh huyền tam giác AHC nên \(HF=\dfrac{1}{2}AC\)

Mà \(\left\{{}\begin{matrix}AE=EB\\BG=GC\end{matrix}\right.\Rightarrow EG\) là đtb tg ABC \(\Rightarrow EG=\dfrac{1}{2}AC\)

Do đó \(HF=EG\) nên EFGH là hthang cân

17 tháng 7 2016

Bài 1 :
B A C H K E D M N

a) Ta có : \(\hept{\begin{cases}AM=MB\\AN=NC\end{cases}\Rightarrow}\)MN là đường trung bình tam giác ABC \(\Rightarrow MN\text{//}BC\) hay \(MN\text{//}HK\left(1\right)\)

Dễ thấy MNKB là hình bình hành => \(\widehat{MNK}=\widehat{ABC}=\widehat{MHB}\)(Vì tam giác AHB vuông có HM là đường trung tuyến ứng với cạnh huyền.) . Mặt khác : \(\widehat{MNK}=\widehat{CKN}\)(hai góc ở vị trí so le trong)

=> \(\widehat{MHB}=\widehat{CKN}\). Mà hai góc này lần lượt bù với \(\widehat{MHK}\)và \(\widehat{HKN}\)=> \(\widehat{MHK}=\widehat{HKN}\) (2)

Từ (1) và (2) suy ra MNKH là hình thang cân.

b) Dễ thấy HK là đường trung bình tam giác AED => HK // ED hay BC // ED (3) 

Tương tự , MH và NK lần lượt là các đường trung bình của các tam giác ABE và ACD

=> BE = 2MH ; CD = 2NK mà MH = NK (MNKH là hình thang cân - câu a)

=> BE = CD (4)

Từ  (3) và (4) suy ra BCDE là hình thang cân.

17 tháng 7 2016

A B C D E N M P

Bài 2 :

a) Ta có : \(\widehat{BAD}=\widehat{CAE}=90^o\Rightarrow\widehat{BAD}+\widehat{DAE}=\widehat{CAE}+\widehat{DAE}\Rightarrow\widehat{BAE}=\widehat{CAD}\)

Xét tam giác BAE và tam giác CAD có : \(AB=AD\left(gt\right)\)\(AC=AE\left(gt\right)\) ; \(\widehat{BAE}=\widehat{CAD}\left(cmt\right)\)

\(\Rightarrow\Delta BAE=\Delta CAD\left(c.g.c\right)\Rightarrow CD=BE\)

b) Dễ dàng chứng minh được MP và PN lần lượt là các đường trung bình của các tam giác ACD và tam giác BEC 

=> MP = 1/2CD ; PN = 1/2 BE mà CD = BE => MP = PN => tam giác MNP cân tại P

Để chứng minh góc MPN = 90 độ , hãy chứng minh BE vuông góc với CD.