Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D M O
a/ Ta có
\(AD\perp OA\) (AD là tiếp tuyến)
O là tâm đường tròn ngoại tiếp \(\Delta ABC\) => AO là trung tuyến của \(\Delta ABC\Rightarrow BC\perp AO\) (trong tg cân đường trung tuyến xuất phát từ đỉnh đồng thời là đường cao)
=> AD//BC (cùng vuông góc với OA); mà AD=BC (gt) => ABCD là hình bình hành ( Tứ giác có 1 cặp cạnh đối // và bằng nhau thì tứ giác đó là hình bình hành)
b/ Do ABCD là hình bình hành nên AC cắt BD tại trung điểm mỗi đường
Mặt khác ta cũng có OM đi qua trung điểm của AC (Hai tiếp tuyến cùng xuất phát từ 1 điểm thì đường nối điểm đó với tâm đường tròn thì vuông góc và chia đôi dây cung nối 2 tiếp điểm)
=> AC; BD; OM đồng quy
) Có:
a)
Vì vậy AD = BC và AD//BC nên tứ giác ABCD là hình bình hành.
b) Theo tứ giác ABCD là hình thành nên BD và AC cắt nhau tại trung điểm của mỗi đường.
Theo tính chất của hai tiếp tuyến cắt nhau thì MA=MC và OM là tia phân giác góc AMC.
AM = MC nên tam giác AMC cân tại M và MO là tia phân giác của tam giác AMC nên OM cũng đi qua trung điểm của AC.
Suy ra ba đường thẳng AC, BD, OM đồng quy.
a) Vì tam giác ABC cân tại A \(\Rightarrow AB=AC\)
Vì O là tâm (ABC) \(\Rightarrow OB=OC\Rightarrow OA\) là trung trực BC
\(\Rightarrow OA\bot BC\) mà \(BC\parallel AD\Rightarrow AD\bot OA\) \(\Rightarrow AD\) là tiếp tuyến
b) MO cắt AC tại E.
Vì MC,MA là tiếp tuyến \(\Rightarrow\Delta MAC\) cân tại M và MO là phân giác \(\angle AMC\)
\(\Rightarrow E\) là trung điểm AC
Vì ABCD là hình bình hành có E là trung điểm AC \(\Rightarrow B,E,D\) thẳng hàng
\(\Rightarrow AC,BD,OM\) đồng quy tại E
a, Tam giác ABC cân tại A nội tiếp (O)
=> OA ⊥ BC
=> OA ⊥ AD (vì AD//BC)
=> AD là tiếp tuyến của (O)
b, Chứng minh được ON là tia phân giác của A O D ^ mà ∆OAC cân tại O nên ON cũng là đường trung tuyến => ON cắt AC tại trung điểm I của AC => ON,AC,BD cùng đi qua trung điểm I của AC
a ) OA \(\perp\)BC
BC // AD
=> OA \(\perp\)AD => AD là tiếp tuyến tại A của đường tròn
b) ON cắt AC tại trung điểm của AC ( ON \(\perp\)AC sử dụng đường kính và dây đường tròn )
Lại có : ABCD là hình bình hành
=> BD cắt AC tại trung điểm của AC
=> Ba đường thẳng AC, BD,ON đồng quy
Chỉ là cách làm thôi bạn tự bổ sung nhé !
Hạ AH vuông góc BC
Tam giác ABC cân tại A => AH là đường trung trực bc => A , O , H thẳng hàng
Ta có AD vuông góc AO ( tia tiếp tuyến vuông góc bán kính đi qua tiếp điểm )
BC vuông góc AH
=> AD // BC
AD = BC => ADBC là hình bình hành
b, Gọi T là trung điểm của AC
ADBC là HBH => AC và BD giao nhau tại T
Theo tính chất 2 tiếp tuyến cắt nhau => AC vuông góc OM tại T
=> AC , BD, AC đồng quy tại T
a: góc OAD+góc OMD=180 độ
=>OADM nội tiếp
b: ΔOBC cân tại O
mà ON là đường cao
nên ONlà trung trực của BC
=>sđ cung NB=sd cung NC
=>góc BAN=góc CAN
=>AN là phân giác của góc BAC
góc DAI=1/2*sđ cung AN
góc DIA=1/2(sđ cung AB+sđ cung NC)
=1/2(sđ cung AB+sđ cung NB)
=1/2*sđ cung AN
=>góc DAI=góc DIA
=>ΔDAI cân tại D
khó thế mà cũng hỏi