Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C I E D
a, Xét tam giác ADB và tam giác AEC có :
AE = AD ( gt )
\(\widehat{A}\) chung
AB = AC ( gt )
=> \(\Delta ADB=\Delta AEC\left(c-g-c\right)\)
b, Do \(\Delta ADB=\Delta AEC\) ( câu a, )
=> \(\widehat{ABD}=\widehat{ACE}\) ( 2 góc tương ứng )
BD nằm giữa 2 tia EB và EC
=> \(\widehat{EBD}+\widehat{CBD}=\widehat{B}\)
\(\Rightarrow\widehat{CBD}=\widehat{B}-\widehat{EBD}\) ( 1 )
CE nằm giữa 2 tia CD và CB
\(\Rightarrow\widehat{BCE}+\widehat{DCE}=\widehat{C}\)
\(\Rightarrow\widehat{BCE}=\widehat{C}-\widehat{DCE}\) ( 2 )
Từ ( 1 ) và ( 2 )
=> \(\widehat{CBD}=\widehat{BCE}\) hay \(\widehat{IBC}=\widehat{ICB}\)
Xét tam giác IBC có
\(\widehat{IBC}=\widehat{ICB}\)
=> tam giác IBC cân tại I
c, Xét tam giác AED có :
AE = AD ( gt )
=> Tam giác AED cân tại A
=> \(\widehat{AED}=\dfrac{180^0-\widehat{A}}{2}\)( 3 )
Tam giác ABC cân tại A
=> \(\widehat{B}=\dfrac{180^0-\widehat{A}}{2}\) ( 4 )
Từ ( 3 ) , ( 4) => \(\widehat{AED}=\widehat{B}\)
Đường thẳng AB bị 2 đường thẳng ED và BC cắt tạo thành cặp góc đồng vị bằng nhau \(\widehat{AED}=\widehat{B}\)
=> ED // BC ( đpcm)
a, Vì \(\left\{{}\begin{matrix}AB=AC\\AD=AE\\\widehat{BAC}.chung\end{matrix}\right.\) nên \(\Delta ABD=\Delta ACE\left(c.g.c\right)\)
b, Vì \(\Delta ABD=\Delta ACE\) nên \(\widehat{ABD}=\widehat{ACE}\)
Mà \(\widehat{ABC}=\widehat{ACB}\) nên \(\widehat{ABC}-\widehat{ABD}=\widehat{ACB}-\widehat{ACE}\)
Do đó \(\widehat{IBC}=\widehat{ICB}\) nên tam giác IBC cân tại I
c, \(AD=AE\) nên tg ADE cân tại A
Do đó \(\widehat{AED}=\dfrac{180^0-\widehat{BAC}}{2}\)
Mà tg ABC cân tại A nên \(\widehat{ABC}=\dfrac{180^0-\widehat{BAC}}{2}\)
\(\Rightarrow\widehat{AED}=\widehat{ABC}\)
Mà 2 góc này ở vị trí đồng vị nên DE//BC
a) Xét △ AED có AE=AD nến △AED cân tại A
⇒\(\widehat{AED}=\widehat{ADE}\) ⇒\(\widehat{DEB}=\widehat{EDC}\)
△ABC cân ⇒AB=AC mà AE=AD⇒EB=DC
Xét △DEB và △EDC có :
\(\widehat{DEB}=\widehat{EDC}\left(cmt\right)\)
ED : cạnh chung
EB=DC \(\left(cmt\right)\)
Do đó : △DEB = △EDC \(\left(c.g.c\right)\)
Nên \(\widehat{EBD}=\widehat{DCE}\) hay \(\widehat{ABD}=\widehat{ACE}\)
b) △ABC cân ⇒\(\widehat{ABC}=\widehat{ACB}\) mà \(\widehat{ABD}=\widehat{ACE}\) (câu a) ⇒\(\widehat{IBC}=\widehat{ICB}\)
Vậy △IBC cân tại I
c) Xét △AIB và △AIC có :
AB=AC(gt)
\(\widehat{ABD}=\widehat{ACE}\) (câu a)
BI=CI(vì △IBC cân tại I)
Do đó :△AIB=△AIC\(\left(c.g.c\right)\)
⇒\(\widehat{BAI}=\widehat{CAI}\) ⇒ AI là tia phân giác \(\widehat{BAC}\)
d) Xét △AED và △ABC có :
A : chung
\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
Nên △AED đồng dạng △ABC \(\left(c.g.c\right)\)
⇒\(\widehat{AED}=\widehat{ABC}\) ⇒ ED//BC
Vì AI là đường phân giác của △AED mà △AED cân nên AI cũng là đường cao ⇒AI⊥ED lại có : ED//BC ⇒AI⊥BC
e) AI⊥BC (AI là đường cao tam giác ABC) mà △ABC cân nên AI cũng là đường trung tuyến ⇒ AI là đường trung trực của BC
a, Xét tam giác ABD và tam giác ACE ta có :
^A _ chung
^AB = AC ( gt )
AD = AE ( gt )
Vậy tam giác ABD = tam giác ACE ( g.c.g )
b, => ^ABD = ^ACE ( 2 góc tương ứng )
mà tam giác ABC cân tại => ^B = ^C
=> ^B - ^ABD = ^DBC
=> ^C - ^ACE = ^ECB
=> ^DBC = ^ECB
Xét tam giác IBC có : ^DBC = ^ECB
nên IBC là tam giác cân tại I
c, Xét tam giác ABI và tam giác ACI ta có :
^ABI = ^ACI ( cmt )
AB = AC ( gt)
IA _ chung
Vậy tam giác ABI = tam giác ACI ( c.g.c )
=> ^BAI = ^CAI ( 2 góc tương ứng )
Vậy AI là phân giác ^BAC
d, Ta có : \(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)=> ED // BC ( Ta lét đảo )
mà AI là phân giác của tam giác ABC cân tại A
=> AI đồng thời là đường cao
=> AI vuông BC ; ED // BC (cmt)
=> AI vuông ED
e, Xét tam giác ABC cân tại A
AI là đường cao, phân giác
đồng thời AI là đường trung trực đoạn BC
\(a,\text{Do }\Delta ABC\text{ cân tại A}\Rightarrow AB=AC\)
\(\text{Xét }\Delta ABD\text{ và }\Delta ACE\text{ có:}\)
\(AB=AC\left(cmt\right)\left(1\right)\)
\(\widehat{A}\text{ chung}\left(2\right)\)
\(AD=AE\left(gt\right)\left(3\right)\)
\(\text{Từ (1),(2) và (3)}\Rightarrow\Delta ABD=\Delta ACE\left(c.g.c\right)\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\left(\text{2 góc tương ứng}\right)\)
\(\text{Vậy }\widehat{ABD}=\widehat{ACE}\)
\(b,+\text{)}\widehat{ABD}=\widehat{ACE}\left(\text{câu a}\right)\text{ hay }\widehat{EBI}=\widehat{DCI}\)
\(+\text{)}\text{Ta có: }AE+BE=AB,AD+CD=AC\)
\(\text{Mà }AE=AD\left(\text{câu a}\right),AB=AC\left(\text{câu a}\right)\)
\(\Rightarrow BE=CD\)
\(+\text{)Xét }\Delta EBI\text{ có:}\widehat{EBI}+\widehat{BIE}+\widehat{IEB}=180^o\left(\text{tổng 3 góc trong }\Delta\right)\left(4\right)\)
\(\text{Xét }\Delta DCI\text{ có:}\widehat{DCI}+\widehat{CID}+\widehat{IDC}=180^o\left(\text{tổng 3 góc trong }\Delta\right)\left(5\right)\)
\(\text{Từ (4) và (5)}\Rightarrow\widehat{EBI}+\widehat{BIE}+\widehat{IEB}=\widehat{DCI}+\widehat{CID}+\widehat{IDC}\)
\(\text{Mà }\widehat{EBI}=\widehat{DCI}\left(cmt\right),\widehat{BIE}=\widehat{CID}\left(\text{đối đỉnh}\right)\)
\(\Rightarrow\widehat{IEB}=\widehat{IDC}\)
\(\text{Xét }\Delta EBI\text{ và }\Delta DCI\text{ có:}\)
\(\widehat{IEB}=\widehat{IDC}\left(cmt\right)\left(6\right)\)
\(BE=CD\left(cmt\right)\left(7\right)\)
\(\widehat{EBI}=\widehat{DCI}\left(cmt\right)\left(8\right)\)
\(\text{Từ (6),(7) và (8)}\Rightarrow\Delta EBI=\Delta DCI\left(g.c.g\right)\)
\(\Rightarrow BI=CI\left(\text{2 cạnh tương ứng}\right)\)
\(\Rightarrow\Delta IBC\text{ cân tại I}\)
\(\text{Vậy }\Delta IBC\text{ là tam giác cân}\)
\(c,+\text{)Do M là trung điểm của BC}\left(gt\right)\Rightarrow BM=CM\)
\(\)\(\text{Xét }\Delta ABM\text{ và }\Delta ACM\text{ có:}\)
\(AB=AC\left(\text{câu a}\right)\left(9\right)\)
\(AM\text{ chung}\left(10\right)\)
\(BM=CM\left(cmt\right)\left(11\right)\)
\(\text{Từ (9),(10) và (11)}\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\left(\text{2 góc tương ứng}\right)\)
\(\Rightarrow AM\text{ là tia phân giác }\widehat{BAC}\)
\(+\text{)}\Delta EBI=\Delta DCI\left(\text{câu b}\right)\)
\(\Rightarrow EI=DI\left(\text{2 cạnh tương ứng}\right)\)
\(\text{Xét }\Delta EAI\text{ và }\Delta DAI\text{ có:}\)
\(EI=DI\left(cmt\right)\left(12\right)\)
\(AI\text{ chung}\left(13\right)\)
\(AE=AD\left(gt\right)\left(14\right)\)
\(\text{Từ (12),(13) và (14)}\Rightarrow\Delta EAI=\Delta DAI\left(c.c.c\right)\)
\(\Rightarrow\widehat{EAI}=\widehat{DAI}\left(\text{2 góc tương ứng}\right)\)
\(\Rightarrow AI\text{ là tia phân giác }\widehat{EAD}\)
\(\text{Hay }AI\text{ là tia phân giác }\widehat{BAC}\left(\text{do E}\in AB,D\in AC\right)\left(15\right)\)
\(\text{Mà }AM\text{ là tia phân giác }\widehat{BAC}\left(cmt\right)\left(16\right)\)
\(\text{Từ (15) và (16)}\Rightarrow A,I.M\text{ thẳng hàng}\left(đpcm\right)\)
`a)`
Có `Delta ABC ` cân tại `A(GT)=>AB=AC`
Xét `Delta ADB` và `Delta AEC` có:
`{:(AB=AC(cmt)),(hat(A)-chung),(AD=AE(GT)):}}`
`=>Delta ADB=Delta AEC(c.g.c)(đpcm)`
`b)`
Có `Delta ABC` cân tại `A=>hat(ABC)=hat(ACB)`
`=>hat(EBC)=hat(DCB)`
mà `hat(B_1)=hat(C_1)(Delta ADB=Delta AEC)`
`hat(B_1)+hat(B_2)=hat(EBC)`
`hat(C_1)+hat(C_2)=hat(DCB)`
nên `hat(B_2)=hat(C_2)`
`=>Delta IBC` cân tại `I`
`c)`
Có `AE=AD(GT)=>Delta AED` cân tại `A`
`=>hat(E_1)=(180^0-hat(A))/2(1)`
`Delta ABC` cân tại `A(GT)=>hat(ABC)=(180^0-hat(A))/2(2)`
Từ `(1)` và `(2)=>hat(E_1)=hat(ABC)`
mà `2` góc này ở vị trí đ/vị
nên `ED////BC(đpcm)`
c.ơn nha