Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
∆ABD và ∆ACE có:
AB=AC(gt)
ˆA góc chung.
AD=AE(gt)
Nên ∆ABD=∆ACE(c.g.c)
Suy ra: ˆABD=ˆACE.
Tức là ˆB1 =ˆC1
b) Ta có ˆB=ˆC mà ˆB1=ˆC1 suy ra ˆB2=ˆC2
Vậy ∆IBC cân tại I
\(a,\text{Do }\Delta ABC\text{ cân tại A}\Rightarrow AB=AC\)
\(\text{Xét }\Delta ABD\text{ và }\Delta ACE\text{ có:}\)
\(AB=AC\left(cmt\right)\left(1\right)\)
\(\widehat{A}\text{ chung}\left(2\right)\)
\(AD=AE\left(gt\right)\left(3\right)\)
\(\text{Từ (1),(2) và (3)}\Rightarrow\Delta ABD=\Delta ACE\left(c.g.c\right)\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\left(\text{2 góc tương ứng}\right)\)
\(\text{Vậy }\widehat{ABD}=\widehat{ACE}\)
\(b,+\text{)}\widehat{ABD}=\widehat{ACE}\left(\text{câu a}\right)\text{ hay }\widehat{EBI}=\widehat{DCI}\)
\(+\text{)}\text{Ta có: }AE+BE=AB,AD+CD=AC\)
\(\text{Mà }AE=AD\left(\text{câu a}\right),AB=AC\left(\text{câu a}\right)\)
\(\Rightarrow BE=CD\)
\(+\text{)Xét }\Delta EBI\text{ có:}\widehat{EBI}+\widehat{BIE}+\widehat{IEB}=180^o\left(\text{tổng 3 góc trong }\Delta\right)\left(4\right)\)
\(\text{Xét }\Delta DCI\text{ có:}\widehat{DCI}+\widehat{CID}+\widehat{IDC}=180^o\left(\text{tổng 3 góc trong }\Delta\right)\left(5\right)\)
\(\text{Từ (4) và (5)}\Rightarrow\widehat{EBI}+\widehat{BIE}+\widehat{IEB}=\widehat{DCI}+\widehat{CID}+\widehat{IDC}\)
\(\text{Mà }\widehat{EBI}=\widehat{DCI}\left(cmt\right),\widehat{BIE}=\widehat{CID}\left(\text{đối đỉnh}\right)\)
\(\Rightarrow\widehat{IEB}=\widehat{IDC}\)
\(\text{Xét }\Delta EBI\text{ và }\Delta DCI\text{ có:}\)
\(\widehat{IEB}=\widehat{IDC}\left(cmt\right)\left(6\right)\)
\(BE=CD\left(cmt\right)\left(7\right)\)
\(\widehat{EBI}=\widehat{DCI}\left(cmt\right)\left(8\right)\)
\(\text{Từ (6),(7) và (8)}\Rightarrow\Delta EBI=\Delta DCI\left(g.c.g\right)\)
\(\Rightarrow BI=CI\left(\text{2 cạnh tương ứng}\right)\)
\(\Rightarrow\Delta IBC\text{ cân tại I}\)
\(\text{Vậy }\Delta IBC\text{ là tam giác cân}\)
\(c,+\text{)Do M là trung điểm của BC}\left(gt\right)\Rightarrow BM=CM\)
\(\)\(\text{Xét }\Delta ABM\text{ và }\Delta ACM\text{ có:}\)
\(AB=AC\left(\text{câu a}\right)\left(9\right)\)
\(AM\text{ chung}\left(10\right)\)
\(BM=CM\left(cmt\right)\left(11\right)\)
\(\text{Từ (9),(10) và (11)}\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{CAM}\left(\text{2 góc tương ứng}\right)\)
\(\Rightarrow AM\text{ là tia phân giác }\widehat{BAC}\)
\(+\text{)}\Delta EBI=\Delta DCI\left(\text{câu b}\right)\)
\(\Rightarrow EI=DI\left(\text{2 cạnh tương ứng}\right)\)
\(\text{Xét }\Delta EAI\text{ và }\Delta DAI\text{ có:}\)
\(EI=DI\left(cmt\right)\left(12\right)\)
\(AI\text{ chung}\left(13\right)\)
\(AE=AD\left(gt\right)\left(14\right)\)
\(\text{Từ (12),(13) và (14)}\Rightarrow\Delta EAI=\Delta DAI\left(c.c.c\right)\)
\(\Rightarrow\widehat{EAI}=\widehat{DAI}\left(\text{2 góc tương ứng}\right)\)
\(\Rightarrow AI\text{ là tia phân giác }\widehat{EAD}\)
\(\text{Hay }AI\text{ là tia phân giác }\widehat{BAC}\left(\text{do E}\in AB,D\in AC\right)\left(15\right)\)
\(\text{Mà }AM\text{ là tia phân giác }\widehat{BAC}\left(cmt\right)\left(16\right)\)
\(\text{Từ (15) và (16)}\Rightarrow A,I.M\text{ thẳng hàng}\left(đpcm\right)\)
A B C E D 1 2 1 2
Giải:
Do \(\Delta ABC\) cân tại A
\(\Rightarrow AB=AC\circledast\)
Xét \(\Delta ABD,\Delta ACE\) có:
\(AB=AC\) ( theo \(\circledast\) )
\(\widehat{A}\): góc chung
\(AE=AD\left(gt\right)\)
\(\Rightarrow\Delta ABD=\widehat{ACE}\left(c-g-c\right)\)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\) ( 2 góc tương ứng )
b) Vì \(\Delta ABC\) cân tại A nên \(\widehat{B}=\widehat{C}\)
Mà \(\widehat{B_2}=\widehat{C_2}\) ( do \(\Delta ABD=\Delta ACE\) )
\(\Rightarrow\widehat{B}-\widehat{B_2}=\widehat{C}-\widehat{C_2}\)
\(\Rightarrow\widehat{B_1}=\widehat{C_1}\)
\(\Rightarrow\Delta IBC\) cân tại I
Vậy...
Ta có hình vẽ:
a/ Xét tam giác ABD và tam giác ACE có:
-AD = AE (GT)
-góc A: góc chung
-AB = AC (vì ABC là \(\Delta\)cân)
Vậy tam giác ABD = tam giác ACE (c.g.c)
b/ Vì tam giác ABD = tam giác ACE (câu a)
nên góc ABD = góc ACE (2 góc tương ứng) (1)
Mà góc B = góc C (vì \(\Delta\)ABC là \(\Delta\)cân) (2)
Từ (1), (2) => IBC = ICB
=> tam giác IBC là tam giác cân
A B C D E I
a,Xét \(\Delta ABD\) và \(\Delta ACE\) có
AB=AC(gt)
góc A chung
AD=AE(gt)
=>\(\Delta ABD\)=\(\Delta ACE\)(cgc)
=> góc ABD = góc ACE ( 2 góc tương ứng )
b, Ta có \(\Delta ABC\) cân tại A
=> góc ABC = góc ACB ( 2 góc ở đáy )
Ta lại có góc ABD+góc DBC = góc ABC
góc ACE+góc ECB = góc ACB
=> góc DBC = góc ECB ( vì góc ABD = góc ACE theo câu a)
hay góc IBC = góc ICB ( vì BD cắt CE tại I )
Xét \(\Delta IBC\)có
góc IBC = góc ICB ( cmt )
=> \(\Delta IBC\)cân tại I
Giải:
∆ABD và ∆ACE có:
AB=AC(gt)
A góc chung.
AD=AE(gt)
Nên ∆ABD=∆ACE(c.g.c)
Suy ra: ABD=ACE.
Tức là B1 =B2.
b) Ta có B=C mà B1 =C1 suy ra B2 =C2.
Vậy ∆IBC cân tại I.
⇒ I B C ^ = I C B ^
Vậy ΔIBC cân tại I