Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a, Xét ∆AHC và ∆DHC có:
+CH chung
+\(\widehat{CHA}=\widehat{CHD}\left(=90^o\right)\)
+HA=HC(gt)
\(\Rightarrow\)∆HCA=∆HCD(ch-cgv)
A B C H D E K
a/ Xét tg vuông AHC và tg vuông DHC có
HC chung
HA = HD (gt)
=> tg AHC = tg DHC (Hai tg vuông có 2 cạnh góc vuông bằng nhau)
b/ K là giao của AE và CD
Xét tg vuông ABC có
\(\widehat{BAH}=\widehat{ACB}\) (cùng phụ với góc \(\widehat{ABC}\) ) (1)
tg AHC = tg DHC (cmt) => \(\widehat{DCH}=\widehat{ACB}\) (2)
Xét tg vuông ABH và tg vuông AEH có
AH chung; HB = HE (gt) => tg ABH = tg AEH (hai tg vuông có 2 cạnh góc vuông bằng nhau) \(\Rightarrow\widehat{BAH}=\widehat{EAH}\) (3)
Từ (1) (2) (3) => \(\widehat{EAH}=\widehat{DCH}\) (4)
Xét tg vuông AHE có
\(\widehat{EAH}+\widehat{AEH}=90^o\) (5)
Mà \(\widehat{AEH}=\widehat{CEK}\) (góc đối đỉnh) (6)
Từ (4) (5) (6) \(\Rightarrow\widehat{DCH}+\widehat{CEK}=90^o\Rightarrow\widehat{AKC}=90^o\)
\(\Rightarrow AK\perp CD\) mà \(CH\perp AD\) => E là trực tâm của tg ADC
c/
tg ABH = tg AEH (cmt) => AB = AE
tg AHC = tg DHC (cmt) => AC = CD
Xét tg ABC có
\(AB+AC>BC\) (trong tg tổng độ dài 2 cạnh lớn hớn độ dài cạnh còn lại)
\(\Rightarrow AE+CD>BC\)
b: Xét tứ giác ABDK có
H là trung điểm chung của AD và BK
AD vuông góc BK tại H
Do đó: ABDK là hình thoi
=>AK//BD
c: ABDK là hình thoi
=>AB=BD
Trả lời 2 câu đầu nha, 2 câu sau tí nữa mình viết sau
a, \(\Delta ABC\)cân tại A có: AH là đường cao của \(\Delta ABC\)\(\Rightarrow\)AH là trung tuyến của \(\Delta ABC\)\(\Rightarrow BH=HC=\frac{BC}{2}=\frac{12}{2}=6\left(cm\right)\)
\(\Delta ABH\)có \(\widehat{AHB}=90^o\)
\(\Rightarrow AB^2=AH^2+BH^2\)(định lý Py-ta-go)
hay \(10^2=AH^2+6^2\)
\(AH^2=64\)
\(AH=8\left(cm\right)\)
b, \(\Delta ABC\)có: \(HD//AC\left(gt\right)\)
\(BH=HC\left(cmt\right)\)
\(\Rightarrow BD=DA\)
\(\Delta ABH\)vuông tại H có: HD là trung tuyến của \(\Delta ABH\)\(\Rightarrow HD=BD=DA=\frac{AB}{2}\)
\(\Delta BDH\)có: \(HD=BD\left(cmt\right)\)\(\Rightarrow\Delta BDH\)cân tại D
c, Nối D với C, H với E
Ta có: \(HD=BD\left(cmt\right)\\ BD=CE\left(gt\right)\)\(\Rightarrow HD=CE\)
Tứ giác DHEC có: \(HD//EC\left(gt\right)\\ HD=EC\left(cmt\right)\)\(\Rightarrow\)DHEC là hình bình hành \(\Rightarrow\)2 đường chéo DE và HC cắt nhau tại trung điểm của mỗi đường \(\Rightarrow\)I là trung điểm của DE
d,
À câu này mình từng làm 1 lần rồi nè: https://olm.vn/hoi-dap/question/1274928.html