Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trug điểm của BC
hay HB=HC
b: BC=6cm
nên BH=3cm
=>\(AH=\sqrt{10^2-3^2}=\sqrt{91}\left(cm\right)\)
c: Xét ΔAEH vuông tại E và ΔAFH vuông tại F có
AH chung
\(\widehat{EAH}=\widehat{FAH}\)
Do đó: ΔAEH=ΔAFH
Suy ra: AE=AF
hay ΔAEF cân tại A
Câu 1 :
A B C H
Xét \(\Delta ABC\) vuông tại A(gt) có :
\(BC^2=AB^2+AC^2\) (định lí PITAGO) (a)
Xét \(\Delta ABH\) vuông tại H \(AH\perp BC\left(gt\right)\)có :
\(AB^2=AH^2+BH^2\) (định lí PITAGO) (1)
Xét \(\Delta AHC\) vuông tại H \(AH\perp BC\left(gt\right)\) có :
\(AC^2=AH^2+CH^2\) (định lí PITAGO) (2)
Ta thay (1) và (2) vào (a) thì có :
\(BC^2=AB^2+AC^2=AH^2+BH^2+AH^2+CH^2=2AH^2+BH^2+CH^2\)
=> đpcm
ABC15AB : AC = 3:4
Ta có : \(AB:AC=3:4\)
Hay : \(\dfrac{AB}{AC}=\dfrac{3}{4}\)
Nên có : \(AB=\dfrac{a}{3};AC=\dfrac{b}{4}\)
Đặt : \(\left\{{}\begin{matrix}\dfrac{a}{3}=k\rightarrow a=3k\\\dfrac{b}{4}=k\rightarrow b=4k\end{matrix}\right.\)
Xét \(\Delta ABC\) vuông tại A (gt) có :
\(BC^2=AB^2+AC^2\)
=> \(15^2=\left(3k\right)^2+\left(4k\right)^2\)
=> \(225=9k^2+16k^2\)
=> \(225=k^2\left(9+16\right)\)
=> \(225=k^2.25\)
=> \(k^2=\dfrac{225}{25}=9\)
=> \(k=\sqrt{9}=3\)
Nên : \(AB=3k=3.3=9\left(cm\right)\)
\(AC=4k=4.3=12\left(cm\right)\)
A B C H
Bài làm:
Ta có:
Xét trong tam giác vuông BHA vuông tại H có:
\(\widehat{BAH}+\widehat{ABH}=90^0\Rightarrow\widehat{BAH}=90^0-\widehat{ABH}=90^0-\widehat{B}\)(1)
Xét trong tam giác vuông ABC vuông tại A có:
\(\widehat{ABC}+\widehat{ACB}=90^0\Rightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-\widehat{B}\)(2)
Từ (1) và (2)
=> \(\widehat{BAH}=\widehat{ACB}=\widehat{C}\)
b) Phần b mình nghĩ bạn viết sai đề rồi nhé
Mình nghĩ đề sửa lại phải là: \(AB^2+CH^2=AC^2+BH^2\)
Xét tam giác vuông AHB vuông tại H có:
\(AB^2=BH^2+AH^2\)\(\Rightarrow AB^2-BH^2=AH^2\left(3\right)\)
Xét tam giác vuông AHC vuông tại H có:
\(AC^2=CH^2+AH^2\)\(\Rightarrow AC^2-CH^2=AH^2\)(4)
Từ (3) và (4)
=> \(AB^2-BH^2=AC^2-CH^2\)
<=> \(AB^2+CH^2=AC^2+BH^2\)
=> ĐPCM
Học tốt!!!!
9h mk sẽ onl để linhk cho các bn nha ^^. Ngày 13 / 6 /2019
Tự vẽ hình :v
a, Vì tam giác ABC cân tại A
=> AB = AC ; ABC = ACB ( tính chất tam giác cân )
Xét tam giác AHB và tam giác AHC Có :
AB = AC ( cmt )
AHB = AHC ( = 90 độ )
ABC = ACB ( cmt )
=> tam giác AHB = tam giác AHC ( cạnh huyền - góc nhọn )
=> HB = HC ( 2 cạnh tương ứng )
Vậy HB = HC
b, VÌ tam giác AHB = tam giác AHC
=> BAH = CAH ( 2 cạnh tương ứng )
Vậy BAH = CAH ( tự thêm mũ nhé )
Đề ghi sai rồi nhé :
Có phải là:Cho tam giác ABC vuông tại A , vẽ AH vuông góc với BC tại H : CMR\(2AH^2+HB^2+HC^2=BC^2\)
Nếu đề như vậy thì áp dụng pytago vào tam giác ABH và tam giác ACH rồi cộng 2 vế là ra đccm
Sửa đề : Cho \(\Delta ABC\)vuông tại A,vẽ \(AH\perp BC\)tại H . Chứng minh rằng : \(BC^2=BH^2+HC^2+2AH^2\)
Lời giải:
Ta có : \(BH+HC=BC\),do vậy \(BC^2=\left(BH+HC\right)^2\)
\(=\left(BH+HC\right)\left(BH+HC\right)=BH\left(BH+HC\right)+HC\left(BH+HC\right)\)
\(=BH+BH\cdot BH+HC\cdot BH+HC^2=BH^2+HC^2+2BH\cdot HC\)
Ta lại có : \(BH^2+HC^2+2AH^2=BH^2+HC+2BH\cdot HC\left(=BC^2\right)\)
nên \(AH^2=BH\cdot HC\).
a) xét \(\Delta ABC\)vuông tại A
\(\Rightarrow BC^2=AB^2+AC^2\left(PYTAGO\right)\)
THAY\(BC^2=5^2+40^2\)
\(BC^2=25+1600\)
\(BC^2=1625\)
\(\Rightarrow BC=\sqrt{1625}\)
B) XÉT LẦN LƯỢT CÁC \(\Delta ABH;\Delta ACH\)
CÓ \(\hept{\begin{cases}AB^2=BH^2+HA^2\\AC^2=HC^2+HA^2\end{cases}}\)
\(\hept{\begin{cases}AB^2=BH^2+HA^2\left(1\right)\\HC^2=AC^2-HA^2\left(2\right)\end{cases}}\)
CỘNG VẾ THEO VẾ ( 1) VÀ (2)
\(\Rightarrow AB^2+CH^2=BH^2+HA^2+AC^2-HA^2\)
\(\Rightarrow AB^2+CH^2=AC^2-HA^2+HA^2+BH^2\)
\(\Rightarrow AB^2+CH^2=AC^2+BH^2\left(ĐPCM\right)\)(- HA ^2 + HA^2 ĐỐI NHAU NÊN = 0 )
Đề sai rồi bạn
Đề này đúng mà, hôm đó thầy mik chữa r!