K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2016

a/ Xét hai tg vuông AIH và AHC có ^HAC chung => AIH đồng dạng AHC

b/ Ta có

2.S(ABC)=AH.BC

2.S(AHC)=AH.CH

mà CH=BC/2

=> S(ABC)=2.S(AHC) => \(\frac{AH.BC}{2}=IH.AC\) mà AC=AB nên

\(\frac{AH.BC}{2}=IH.AB\Rightarrow AH.BC=2.IH.AB\)

c/ Ta có

\(AH^2=AI.AC=16.\left(16+9\right)=16.25=4^2.5^2=\left(4.5\right)^2=400\Rightarrow AH=20\)

\(HC^2=CI.AC=9.\left(9+16\right)=3^2.5^2=\left(3.5\right)^2=15^2\Rightarrow HC=15\Rightarrow BC=2.HC=30\)

\(S_{ABC}=\frac{AH.BC}{2}=\frac{20.30}{2}=300\)

d/

9 tháng 3 2018

 tam giác AHB đồng dạng với tam giác HCI ( g.g ) ( Bạn tự chứng minh )

\(\Rightarrow\frac{AH}{HI}=\frac{BH}{CI}\Rightarrow\frac{AH}{OH}=\frac{BC}{CI}\)

Suy ra tam giác BIC đồng dạng với tam giác AOH ( đpcm )

b) Qua H kẻ HE // BI 

Ta cũng dễ chứng minh được OE // BC suy ra \(OE\perp AH\)

Suy ra tam giác AHE có trực tâm là O 

Suy ra AO vuông góc với BI ( đpcm )

9 tháng 3 2018

Làm ngắn thế Hiếu!

Bạn tự vẽ hình!!!

a) Hai tam giác vuông AHC và HIC có chung góc C nên chúng đồng dạng 

\(\Delta AHC\approx\Delta HIC\Rightarrow\frac{HA}{HI}=\frac{HC}{IC}\)

\(\frac{HA}{2HO}=\frac{BC}{2IC}\Rightarrow\frac{HA}{HO}=\frac{BC}{IC}\left(1\right)\)

Mặt khác: \(\widehat{AHO}=\widehat{ICB}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\Delta BIC\approx\Delta AOH\left(c-g-c\right)\)

b) Gọi D là giao điểm của AH và BI , E là giao điểm của AO và BI 

\(\Delta BIC\approx\Delta AOH\left(cmt\right)\Rightarrow\widehat{IBH}=\widehat{HAO}\)

Ta lại có: góc BDH = góc ADE (dđ) => IBH + BDH = HAO + ADE

Tam giác BHD vuông nên IBH + BDH=90 độ => HAO + ADE =90 độ => góc AED = 90 độ hay \(AO\perp BI\)

Mọi người giúp mình với, mình đang cần gấp 1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:a) Tam giác ABD cânb) BD vuông góc với DE.2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.Chứng minh HC⊥CQ3. Cho tam giác ABC...
Đọc tiếp

Mọi người giúp mình với, mình đang cần gấp 

1. Cho tam giác ATM vuông tại A (AT<AM), đường cao AB. C thuộc tia BM sao cho BC=BT và CD vuông góc với AM tại D. E là trung điểm của CM. Chứng minh:
a) Tam giác ABD cân
b) BD vuông góc với DE.
2. Cho tam giác ATM nhọn, các đường cao TC và MB cắt nhau tại K. Vẽ TD⊥BC tại D; 
ME⊥BC tại E. H là trung điểm của AK, Q là trung điểm của TM.
Chứng minh HC⊥CQ
3. Cho tam giác ABC vuông tại A (AB<AC), trên cạnh BC lấy N sao cho BN=NA, trên cạnh BC lấy M sao cho CM=CA. Tia phân giác góc ABC cắt AM tại E, tia phân giác góc ACB cắt AN tại D. Gọi O là giao của BE và CD, gọi H là giao của MD và NE. 
a) Tính góc MAN b) CHứng minh EODH là hình bình hành
c) Gọi K và I lần lượt là trung điểm của AH và MN. Chứng minh IEKD là hình vuông.
4. Cho hình vuông ABCD, E là điểm trên cạnh AB. Trên cùng một đường thẳng bờ là đường thẳng AB có chứa điểm D, dựng các hình vuông AEGH và BEFK. AK cắt BD tại S, AC cắt DE tại T. CHứng minh:
a) AF⊥BG tại M
b) Bốn điểm H, M, K, O thẳng hàng ( O là giao của BD và AC)
c) E, S, C thẳng hàng
d) B, T, H thẳng hàng

5. Cho tam giác ABC nhọn, vẽ ra phía ngoài của tam giác ABC hai hình vuông ABMN và ACEF. Gọi I và K là tâm hình vuông ABMN và ACEF. P,Q là trung điểm của NF và BC. Chứng minh S ABC=S NAF

0