Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, tứ giác AHCE là hình chữ nhật , vì AD=DC và HD=DE
b, áp dụng đl pytago vào tam giác vuông AHC( H là đường cao ABC):
\(HC^2=AC^2-AH^2\\ HC^2=10^2-6^2\\ HC=\sqrt{10^2-6^2}=8cm\)
\(S_{AHCE}=AH.HC=6.8=48cm^2\)
ABCKHM----
a) Xét tứ giác AHCK ta có:
Vì O trung điểm AC
K đối xứng vs H qua O => O trung điểm HK
Mà AC và HK cắt nhau tại trung điểm O
=> AHCK là hbh ( hai đg chéo cắt nhau tại trug điểm mỗi đg)
Lại có ^AHC=90o ( AH là đường cao)
=> AHCK là hcn (hbh có 1 góc vuông)
b) Xét tứ giác ABMC có:
M đối xứng với A qua H => AM là đường trung trực
=> AB=AC (1)
Mặt khác:M đối xứng vs A qua H=> H trung điểm AM
AH là đường cao của tam giác ABC cân tại A
=> AH là đường trung tuyến của tam giác ABC
=>H là trug điểm BC (HB=HC)
mà AM và BC cắt nhau tại trug điểm H
Nên ABCM là hbh (2 đg chéo cắt nhau tại trugđ mỗi đg) (2)
Từ (1) và (2) => ABMC là hình thoi ( hbh có 2 cạnh kề = nhau) (đpcm)
c) Xét tứ giác ABHK có:
Vì HB=HC (cmt)
mà AK=HC ( AKHC là hcn)
=> AK=BH
Lại có AK//BC (AKHC là hcn)
=>AK//BH
Nên AKBH là hbh ( 2 cạnh đối // và = nhau)
d) VÌ HB=HC=BC/2 (cm câu a)
=> HC=6/2=3 cm
Áp dụng công thức tính S và hcn AKHC ta có:
SAKHC=AH.HC
=> SAKHC=4.3=12 (cm2)
Vậy SAKHC=12 cm2
b: Xét tứ giác AHBQ có
M là trung điểm của AB
M là trung điểm của HQ
Do đó: AHBQ là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AHBQ là hình chữ nhật
Xét tứ giác AHCE có
D là trung điểm của AC
D là trung điểm của HE
Do đó: AHCE là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCE là hình chữ nhật
\(S_{AHCE}=AH\cdot HC=6\cdot8=48\left(cm^2\right)\)
https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem
Bạn xem tại link này nhé
Học tốt!!!!!!
a: Xét tứ giác AHCD có
I là trung điểm chung của AC và HD
=>AHCD là hình bình hành
Hình bình hành AHCD có \(\widehat{AHC}=90^0\)
nên AHCD là hình chữ nhật
b: Ta có: AHCD là hình chữ nhật
=>\(AC^2=AD^2+AH^2\)
=>\(AC^2=6^2+8^2=100\)
=>\(AC=\sqrt{100}=10\left(cm\right)\)
Ta có: ΔAHC vuông tại H
mà HI là đường trung tuyến
nên \(HI=\dfrac{AC}{2}=5\left(cm\right)\)
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
nên ABCD là hình bình hành
b: Xét tứ giác AEBC có
N là trung điểm chung của AB và EC
nên AEBC là hình bình hành
=>AE//BC và AE=BC
=>AD//AE và AD=AE
=>A là trung điểm của DE
a: HI=7,5(cm)
b: Xét tứ giác AHBM có
I là trung điểm của AB
I là trung điểm của HM
Do đó: AHBM là hình bình hành
mà ˆAHB=900AHB^=900
nên AHBM là hình chữ nhật
HT...
a: Xét tứ giác AHCE có
D là trung điểm chung của AC và HE
góc AHC=90 độ
Do đó: AHCE là hình chữ nhật
b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)
=>BC=2*BH=6cm
\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot4=2\cdot6=12\left(cm^2\right)\)
Cm ơn nhiều nhá :))