Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Ta có:BM=CM=BC2BC2=102102=5(cm)
Vì AM là trung tuyến
=>AM là đường cao
Xét ΔABM vuông tại M có:
AB2=AM2+MB2(định lý pytago)
Hay:132=AM2+52
169=AM2+25
AM2=√144144
AM=12(cm)
b.ta có M là trung điểm NC nên MC=MB
ta lại có N là trung điểm MB => MN=NB
vậy MC=2323MN
xét tgac ACD có NC là đường trung tuyến ứng với cạnh AD
mà M thuộc CN và MC=2323MN nên theo định nghĩa M là trọng tâm tgiac ACD
mặt khác E là trung điểm CD vậy AE là đường trung tuyến ứng với CD vậy A; M;E thẳng hàng
tam giác NAB= tam giác NDM (c.g.c);
nên AB song song DM;
từ đó suy ra AM song song BD (1);
xét tam giác BDC có
M là trung điểm BC
E là trung điểm DC
suy ra ME song song BD (2)
từ (1) và (2)
suy ra A,M,E thẳng hàng.
A B C E M D
b.ta có M là trung điểm NC nên MC=MB
ta lại có N là trung điểm MB => MN=NB
vậy MC=\(\frac{2}{3}\)MN
xét tgac ACD có NC là đường trung tuyến ứng với cạnh AD
mà M thuộc CN và MC=\(\frac{2}{3}\)MN nên theo định nghĩa M là trọng tâm tgiac ACD
mặt khác E là trung điểm CD vậy AE là đường trung tuyến ứng với CD vậy A; M;E thẳng hàng
a, Xét tam giác ABM và tam giác ACM có
AB=AC(gt)
BM=CM(gt)
^ABC=^ACB(gt)
=> tam giác ABM= tam giác ACM(c-g-c)
=> ^AMB=^AMC(2 g tương ứng)
=> ^AMB=^AMC=180 độ /2 =90 độ
hay AM vuông góc vs BC
b, Ta có: BM=MC=1/2 BC=5
Áp dụng đly pitago vào tam giác vuông ABM có:
AM^2=AB^2-BM^2=13^2-5^2=144
=> AM=12
c/ Ta có tính chất: Trong 1 tam giác vuông, trung tuyến của góc vuông đến cạnh đối diện (cạnh huyền) sẽ bằng 1/2 cạnh huyền.
Xét tam giác vuông ABC, có trung tuyến AM, vậy AM=CM (=1/2 BC) => Tam giác ACM cân ( 2 cạnh bên bằng nhau) => ^ MCA=^MAC
Xét tam giác DMB và tam giác CMA
Có: CM=MB ( M trugn điểm)
DM=AM ( gt)
^DMB=^CMA (đđ)
Vậy hai tam giác =nhau =>^BDM=^MAC và ^DBM=^
B suy tiếp nhé!
Bạn tự vẽ hình nha!
Xét tam giác ABC vuông tại A, có: \(BC^2=AB^2+AC^2\)
\(225=81+AC^2\)
\(\Rightarrow AC^2=144\)
\(\Rightarrow AC=12\left(cm\right)\)
Xét tam giác MAB và tam giác MDC:
Có: DM=AM (gt)
CM=MB (AM trung tuyến)
Góc DMC=Góc AMB (đđ)
Vậy tam giác MAB= tam giác MDC (C.G.C)
a, AM là đường trung tuyến của tam giác cân ABC => BM=MC=1/2 BC = 5
AM là đường trung tuyến của tam giác cân ABC nên AM cũng đồng thời là đường cao trong tam giác này
=> góc AMB = 90độ
Áp dụng định lí Pytago vào tam giác vuông ABM tại M có: \(AM^2=AB^2-BM^2=13^2-5^2=12^2\Rightarrow AM=12\\ \)
b, EF là trung trực AC => FE vuông góc AC và R là trung điểm AC
Hay góc FEC=90độ và EC=EA
Xét tam giác FEC và FEA có:
FE _ cạnh chung
góc FEC = góc FEA = 90độ
EC=EA
=> tg FEC = tg FEA (c-g-c) => FC=FA => tg FAC cận tại F
Xét tg FAC có FE, AM là 2 đường cao trong tam giác và chúng cắt nhau tại I => I là trực tâm tg FAC => CI vuong góc À