K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 6 2021

Lời giải:

a.

Vì $\widehat{BAH}=\widehat{CAM}$ nên $\widehat{BAM]=\widehat{CAH}$

Ta có:

\(\frac{HB}{HC}=\frac{S_{BAH}}{S_{CAH}}=\frac{BA.AH.\sin \widehat{BAH}}{CA.AH.\sin \widehat{CAH}}=\frac{AB}{AC}.\frac{\sin \widehat{CAM}}{\sin \widehat{BAM}}(1)\)

\(1=\frac{BM}{CM}=\frac{S_{BAM}}{S_{CAM}}=\frac{AB.AM\sin \widehat{BAM}}{AC.AM.\sin \widehat{CAM}}=\frac{AB.\sin \widehat{BAM}}{AC\sin \widehat{CAM}}\)

\(\Rightarrow \frac{\sin \widehat{CAM}}{\sin \widehat{BAM}}=\frac{AB}{AC}(2)\)

Từ $(1);(2)\Rightarrow \frac{HB}{HC}=\frac{AB^2}{AC^2}$

b.

Đặt $AB=c; BC=a; CA=b$ thì theo phần a ta có:

$\frac{BH}{CH}=\frac{c^2}{b^2}\Rightarrow \frac{BH}{a}=\frac{c^2}{b^2+c^2}$

$\Rightarrow BH=\frac{ac^2}{b^2+c^2}$
$CH=\frac{ab^2}{b^2+c^2}$
Theo định lý Pitago:

$c^2-BH^2=b^2-CH^2$

$\Leftrightarrow c^2-\frac{a^2c^4}{(b^2+c^2)^2}=b^2-\frac{a^2b^4}{(b^2+c^2)^2}$

$\Leftrightarrow (b^2-c^2)=\frac{a^2(b^4-c^4)}{(b^2+c^2)^2}$

$\Leftrightarrow b^2-c^2=\frac{a^2(b^2-c^2)}{b^2+c^2}$

$\Leftrightarrow (b^2-c^2)(b^2+c^2)=a^2(b^2-c^2)$

$\Rightarrow b^2-c^2=0$ hoặc $b^2+c^2=a^2$ 

$\Leftrightarrow AB=AC$ hoặc tam giác $ABC$ vuông tại $A$.

AH
Akai Haruma
Giáo viên
28 tháng 6 2021

Hình vẽ:

23 tháng 8 2018

ý 1 câu a )

 có ED vuông góc BC  ; AH vuông góc BC  => ED//AH =>  tam giác CDE đồng dạng vs tam giác CHA  ( talet)      (1)

 xét tam giác CHA  và tam giác CAB  có CHA=CAB=90 độ ; C chung => tam giác CHA  đồng dạng vs tam giác CAB ( gg) (2)

  từ (1) và (2) =>tam giác CDE  đồng dạng tam giác CAB  (  cùng đồng dạng tam giác CHA )

 có tam giác CDE đồng dạng tam giác CAB  (cmt) => \(\frac{CE}{CB}=\frac{CD}{CA}\)

xét tam giác BAC  và tam giác ADC  có góc C chung và \(\frac{CE}{BC}=\frac{CD}{AC}\left(CMT\right)\) => tam giác BAC đồng dạng vs tam giác ADC (  trường hợp c-g-c) , mấy câu kia quên mịa nó r -.-

25 tháng 8 2018

thanks bạn

25 tháng 8 2018

Bài 1: Cho tam giác ABC vuông tại A, đường cao AH. a) Biết AH = 6cm, BH = 4,5cm.Tính AB, AC, BC,HC. b) Biết AB = 6cm, BH = 3cm.Tính AH và tính chu vi của các tam giác vuông trong hình.

Bài 1:

\(HC=\dfrac{AH^2}{HB}=\dfrac{36}{4.5}=8\left(cm\right)\)

BC=BH+CH=12,5cm

\(AB=\sqrt{4.5\cdot12.5}=7.5\left(cm\right)\)

\(AC=\sqrt{8\cdot12.5}=10\left(cm\right)\)

25 tháng 8 2018

Bài 1) Ta có △ABC có đường cao AH ⇒AH2=BH.HC⇒36=4,5.HC⇒HC=8(cm)

Ta có BC=HC+BH=4,5+8=12,5(cm)

Ta có AB2=BH.BC=4,5.12,5=56,25⇒AB=7,5(cm)

Ta có AC2=BC2-AB2=156,25-56,25=100⇒AC=10(cm)

Bài 2) Chắc bạn ghi sai đề rồi

25 tháng 8 2018

bài 2 mình ghi đúng mà bạn

23 tháng 6 2017

A B C M N Q I H a D

Bạn vẽ hình rồi kí hiệu như trên.

a) \(\dfrac{AB}{AC}=\dfrac{1}{\sqrt{3}}\Rightarrow\dfrac{AB^2}{AC^2}=\dfrac{1}{3}=\dfrac{BH\cdot BC}{CH\cdot BC}=\dfrac{BH}{CH}\)(Cái này áp dụng hệ thức lượng tam giác dạng \(c^2=a\cdot c'\)).

Ta có : \(\left\{{}\begin{matrix}\dfrac{BH}{CH}=\dfrac{1}{3}\\CH-BH=8\end{matrix}\right.\) => Hiệu số phần bằng nhau là 2.

Ta tính được : \(\left\{{}\begin{matrix}CH=\dfrac{8}{2}\cdot3=12\\BH=\dfrac{12}{3}=4\end{matrix}\right.\) => \(BC=BH+CH=16\).

\(\dfrac{AB^2}{AC^2}=\dfrac{1}{3}\), mà \(AB^2+AC^2=BC^2=16^2=256\)

Tổng số phần bằng nhau là 4.

\(\Rightarrow\left\{{}\begin{matrix}AB^2=\dfrac{256}{4}=64\\AC^2=\dfrac{256}{4}\cdot3=192\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=8\\AC=8\sqrt{3}\end{matrix}\right.\)

Vậy \(\Delta ABC\)\(AB=8,AC=8\sqrt{3},BC=16\).

b)\(S_{MNIQ}=MQ\cdot MN=a\cdot MN\) (kí hiệu như hình).

Trong đó : \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{8\cdot8\sqrt{3}}{16}=4\sqrt{3}\)

+) \(AD=AH-HD=AH-MQ=4\sqrt{3}-a\)

+) \(MN\)//\(BC\Rightarrow\Delta AMN\) đồng dạng với \(\Delta ABC\)

\(\Rightarrow\dfrac{MN}{BC}=\dfrac{AD}{AH}\Rightarrow MN=\dfrac{BC\cdot AD}{AH}\)

\(=\dfrac{16\cdot\left(4\sqrt{3}-a\right)}{4\sqrt{3}}=\dfrac{4\cdot\left(4\sqrt{3}-a\right)}{\sqrt{3}}\)

=> \(S_{MNIQ}=MQ\cdot MN=a\cdot\left(\dfrac{4\cdot\left(4\sqrt{3}-a\right)}{\sqrt{3}}\right)=\dfrac{16\sqrt{3}a-4a^2}{\sqrt{3}}\)

\(=\dfrac{-\left(4a^2-16\sqrt{3}a\right)}{\sqrt{3}}=-\dfrac{\left[\left(2a-4\sqrt{3}\right)^2-48\right]}{\sqrt{3}}\)

\(=\dfrac{48-\left(2a-4\sqrt{3}\right)^2}{\sqrt{3}}=\dfrac{48}{\sqrt{3}}-\dfrac{\left(2a-4\sqrt{3}\right)^2}{\sqrt{3}}\le\dfrac{48}{\sqrt{3}}=16\sqrt{3}\)

Vậy \(S_{MNIQ-max}=16\sqrt{3}\Leftrightarrow a=2\sqrt{3}\).

23 tháng 6 2017

làm hộ mình vài bài đại số vào trang mình là thấy

giúp voi