Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow sinA=2sinB.cosC\)
\(\Leftrightarrow\dfrac{a}{2R}=2.\dfrac{b}{2R}.\dfrac{a^2+b^2-c^2}{2ab}\)
\(\Leftrightarrow a^2=a^2+b^2-c^2\)
\(\Leftrightarrow b^2=c^2\Leftrightarrow b=c\)
Vậy tam giác ABC cân tại A
asinA=bsinB=2R⇒{sinA=a2RsinB=b2RasinA=bsinB=2R⇒{sinA=a2RsinB=b2R
c2=a2+b2−2bacosC⇒cosC=a2+b2−c22abc2=a2+b2−2bacosC⇒cosC=a2+b2−c22ab
dt⇔a2R=2.b2R.a2+b2−c22abdt⇔a2R=2.b2R.a2+b2−c22ab
⇔a=a2+b2−c2a⇔a2=a2+b2−c2⇔a=a2+b2−c2a⇔a2=a2+b2−c2
⇒b2=c2⇒b=c⇒b2=c2⇒b=c
Vậy tam giác ABC cân tại A
A, B , C là ba góc của ΔABC nên ta có: A + B + C = 180º
a) sin A = sin (180º – A) = sin (B + C)
b) cos A = – cos (180º – A) = –cos (B + C)
Ta có: \(A+B+C=180^o\)
a)
\(\sin (B + C) = \sin \left( {{{180}^o} - A} \right) = \sin A\)
Vậy \(\sin A = \sin \;(B + C)\)
b)
\(\cos (B + C) = \cos \left( {{{180}^o} - A} \right) = - \cos A\)
Vậy \(\cos A = - \cos \;(B + C)\)
\(sinA.cosB.cosC+sinB.cosC.cosA+sinC.cosB.cosA\)
\(=cosC\left(sinA.cosB+cosA.sinB\right)+sinC.cosB.cosA\)
\(=cosC.sin\left(A+B\right)+sinC.cosB.cosA\)
\(=cosC.sinC+sinC.cosA.cosB\)
\(=sinC\left(cosC+cosA.cosB\right)=sinC\left(-cos\left(A+B\right)+cosA.cosB\right)\)
\(=sinC\left(-cosA.cosB+sinA.sinB+cosA.cosB\right)\)
\(=sinA.sinB.sinC\)
asinA=bsinB=2R⇒{sinA=a2RsinB=b2RasinA=bsinB=2R⇒{sinA=a2RsinB=b2R
c2=a2+b2−2bacosC⇒cosC=a2+b2−c22abc2=a2+b2−2bacosC⇒cosC=a2+b2−c22ab
dt⇔a2R=2.b2R.a2+b2−c22abdt⇔a2R=2.b2R.a2+b2−c22ab
⇔a=a2+b2−c2a⇔a2=a2+b2−c2⇔a=a2+b2−c2a⇔a2=a2+b2−c2
⇒b2=c2⇒b=c⇒b2=c2⇒b=c
Vậy tam giác ABC cân tại A