K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2016

định lý hàm số sin: 
a/ \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=\)2R 
=> a = 2R.sinA = 2R.sin[180o - (B+C)] = 2R.sin(B+C) 
và b = 2R.sinB; c = 2R.sinC thay vào (*) được: 
 \(\frac{2R\times sinB}{cosB}+\frac{2R\times sinC}{cosC}=\frac{2R\times sin\left(B+C\right)}{sinBsinC}\)
<=>sinB/cosB + sinC/cosC = sin(B+C)/(sinB.sinC) 
<=> sin(B+C)/(cosBcosC) = sin(B+C)/(sinB.sinC) 
<=> cosBcosC = sinB.sinC 
<=> cosBcosC - sinB.sinC = 0 
<=> cos(B+C) = 0 
<=> B+C = 90o 
vậy tam giác ABC vuông tại A

18 tháng 5 2016

b/cosB+c/cosC=a/sinB.sinC (*) 

Áp dụng định lý hàm số sin: 
a/sinA = b/sinB = c/sinC = 2R 
=> a = 2R.sinA = 2R.sin[1800 - (B+C)] = 2R.sin(B+C) 
và b = 2R.sinB; c = 2R.sinC thay vào (*) được: 
2R.sinB/cosB + 2RsinC/cosC = 2R.sin(B+C)/(sinB.sinC) 
<=>sinB/cosB + sinC/cosC = sin(B+C)/(sinB.sinC) 
<=> sin(B+C)/(cosBcosC) = sin(B+C)/(sinB.sinC) 
<=> cosBcosC = sinB.sinC 
<=> cosBcosC - sinB.sinC = 0 
<=> cos(B+C) = 0 
<=> B+C = 900

25 tháng 8 2016

lần đầu e thấy thầy giải luôn 

19 tháng 5 2017

Các hệ thức lượng giác trong tam giác và giải tam giác

Các hệ thức lượng giác trong tam giác và giải tam giác

30 tháng 3 2017

Trong một tam giác thì tổng các góc là 1800 :

+ + = 1800 => = -1800 - ( + )

và ( + ) là 2 góc bù nhau, do đó:

a) sinA = sin[1800 - ( + )] = sin (B + C)

b) cosA = cos[1800 - ( + )] = -cos (B + C)

1 tháng 1 2021

Đặt \(m=2018,\frac{\sin B+m\sin C}{m\cos B+\cos C}=\sin A\Leftrightarrow b+mc=a\left(m\cos B+\cos C\right)\)

\(\Leftrightarrow b+mc=\frac{m\left(a^2+c^2-b^2\right)}{2c}+\frac{a^2+b^2-c^2}{2b}\)

\(\Leftrightarrow2bc\left(b+mc\right)=mb\left(a^2+c^2-b^2\right)+c\left(a^2+b^2-c^2\right)\)

\(\Leftrightarrow2b^2c+2mbc^2=mba^2+mbc^2-mb^3+ca^2+cb^2-c^3\)

\(\Leftrightarrow\left(c+mb\right)\left(b^2+c^2-a^2\right)=0\Leftrightarrow a^2=b^2+c^2\)

Vậy tam giác ABC vuông tại A

Dễ dàng CM được \(S_{ABC}=6.S_{MBG}\Rightarrow bc=12.S_{MBG}\).Do vậy ta cần CM bc chia hết cho 12

( ta sử dụng tính chất của số chính phương)

- Số chính phương chia 3 chỉ dư 0 hoặc 1

- Số chính phương chia 4 chỉ dư 0 hoặc 1

- Số chính phương lẻ chia 8 chỉ dư 1

*) Ta thấy trong 2 số \(b^2,c^2\)có ít nhất 1 số chia hết cho 3. giả sử không có số nào trong 2 số đó chia hết cho 3. Khi đó mỗi số đều chia 3 dư 1. Do đó a2 chia 3 dư 2 ( trái với tính chất số chính phương)

Do 3 là số nguyên tố nên trong 2 số b,c có ít nhất 1 số chia hết cho 3 . (1)

*)Chứng minh trong 2 số b,c có ít nhất 1 số chia hết cho 4. giả sử không có số nào trong 2 số đó chia hết cho 4. Khi đó \(b=4m+r;c=4n+q;r,q\in\left\{1;2;-1\right\}\)

+ Nếu \(r,q\in\left\{1;-1\right\}\Rightarrow a^2\)chia 4 dư 2 ( vô lý)

+ Nếu \(r\in\left\{-1;1\right\},q=2\) hoặc ngược lại thì a2 là số lẻ và a2 chia 8 dư 5 ( vô lý)

+ Nếu r=q=2 thì \(a^2=4\left(2m+1\right)^2+4\left(2n+1\right)^2\Rightarrow\)a chẵn

Đặt \(a=2p\Rightarrow p^2=\left(2m+1\right)^2+\left(2n+1\right)^2\Rightarrow p^2\)chia 4 dư 2 ( vô lý)

Vậy trong 2 số b,c có ít nhất 1 số chia hết cho 4 (2)

Từ (1) và (2) => đpcm

13 tháng 4 2016

Trong một tam giác thì tổng các góc là 1800  :

 +  +  = 1800                 =>   = -1800 – ( +  )

 và  ( + ) là 2 góc bù nhau, do đó:

a) sinA = sin[1800 – ( + )] = sin (B + C)

b) cosA = cos[1800 – ( + )] = -cos (B + C)