K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

\(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\le0\)

Nhận thấy:  \(\left|2x+1\right|\ge0\);     \(\left|x+y-\frac{1}{2}\right|\ge0\)

=>   \(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\ge0\)

Dấu "=" xảy ra  <=>  \(\hept{\begin{cases}2x+1=0\\x+y-\frac{1}{2}=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-\frac{1}{2}\\y=1\end{cases}}\)

đến đây bạn thay x,y tìm đc vào A để tính nhé

11 tháng 3 2016

Xin lỗi! Mình mới học lớp 5 thôi à!

28 tháng 6 2015

1) \(\left|2x+5\right|\ge21\Rightarrow2x+5\ge21\)hoặc \(2x+5<-21\)<=> \(x\ge8\) hoặc \(x<-13\)

2) 

a) |2x-3|>=0 => A>=0-5=-5 => Min A=-5 <=> x=3/2

b) \(\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=\left|2\right|=2\Rightarrow B\ge2+5=7\)=> MinB=7 <=>x=1

3)

\(\left|2x-1\right|\ge0\Rightarrow-\left|2x-1\right|\le0\Leftrightarrow A\le0+7=7\Rightarrow MaxA=7\Leftrightarrow x=-\frac{1}{2}\)

b) 

th1: nếu x<-3/2 => B=-2x-3+2x+2=-1

th2: nếu \(-\frac{3}{2}\le x\le-1\)=> B=2x+3+2x+2=4x+5

ta có:\(-\frac{3}{2}\le x\le-1\Rightarrow-6\le4x\le-4\Leftrightarrow-1\le4x+5\le1\Rightarrow-1\le B\le1\)

th3: nếu x>-1 => B=2x+3-2x-2=1=>

Max B=1 <=> x>-1 hoặc \(-\frac{3}{2}\le x\le-1\)

28 tháng 6 2015

2b) Áp dụng bất đẳng thức giá trị tuyệt đối: |a| + |b|  \(\ge\) |a + b|. Dấu "=" xảy ra khi tích a.b \(\ge\) 0 

Ta có: B = |2x - 1| + |3 - 2x| + 5  \(\ge\) |2x - 1+3 - 2x| + 5  = |2| + 5 = 7

=> Min B = 7 khi

(2x - 1)( 3 - 2x) \(\ge\) 0 => (2x - 1)(2x - 3) \(\le\) 0 

Mà 2x - 1 > 2x - 3 nên 2x - 1 \(\ge\) 0 và 2x - 3 \(\le\)  0 

=> x \(\ge\) 1/2 và x  \(\le\) 3/2

 

5 tháng 4 2018

a/b=2 => a=2b thay vào D tính

14 tháng 6 2018

\(M=\left(x^4+2x^2y^2+y^4\right)+x^4+x^2y^2+y^2\)
\(M=\left(x^2+y^2\right)^2+x^2\left(x^2+y^2\right)+y^2\)
\(M=1^2+x^2.1+y^2\)
\(M=1+1=2\)

14 tháng 6 2018

\(M=2x^4+3x^2y^2+y^4+y^2\)

\(M=2x^4+2x^2y^2+x^2y^2+y^4+y^2\)

\(M=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)

\(M=\left(2x^2+y^2\right)\left(x^2+y^2\right)+y^2\)

\(M=\left(2x^2+y^2\right).1+y^2\)

\(M=2x^2+2y^2=2\left(x^2+y^2\right)=2.1=2\)

Vậy M = 2

1 tháng 3 2017

Đặt \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=k\)  \(\left(k\in R\right)\)

\(\Rightarrow x=3k;y=7k;z=2k\) Thay vào biểu thức \(\frac{2x-3y+5z}{x+4y-3z}\) ta được :

\(\frac{2x-3y+5z}{x+4y-3z}=\frac{2.3k-3.7k+5.2k}{3k+4.7k-3.2k}=\frac{k\left(2.3-3.7+5.2\right)}{k\left(3+4.7-3.2\right)}=\frac{6-21+10}{3+28-6}=\frac{-5}{25}=-\frac{1}{5}\)

Vậy \(\frac{2x-3y+5z}{x+4y-3z}=-\frac{1}{5}\) tại \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)

22 tháng 12 2018

\(x^2-4x+1=0\)

( a = 1 ; b = -4 ; c =1 )

\(\Delta=b^2-4ac\) 

\(=\left(-4\right)^2-4.1.1\)

\(=16-4\)

\(=12>0\)

\(\sqrt{\Delta}=\sqrt{12}=2\sqrt{3}\)

Vì \(\Delta>0\) nên phương trình có 2 nghiệm phân biệt 

\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{4+2\sqrt{3}}{2.1}=2+\sqrt{3}\)

\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{4-2\sqrt{3}}{2.1}=2-\sqrt{3}\)

Ta có : \(G=\frac{x^2}{x^4+1}\) 

. Thay \(x_1\) vào ta được : \(G=\frac{\left(2+\sqrt{3}\right)^2}{\left(2+\sqrt{3}\right)^4+1}\)

 \(=\frac{4+4\sqrt{3}+3}{\left(4+4\sqrt{3}+3\right)^2+1}\)

\(=\frac{4\sqrt{3}+7}{\left(4\sqrt{3}+7\right)^2+1}\)

\(=\frac{4\sqrt{3}+7}{48+56\sqrt{3}+49+1}\)

\(=\frac{4\sqrt{3}+7}{56\sqrt{3}+98}\)

\(=\frac{4\sqrt{3}+7}{14.\left(4\sqrt{3}+7\right)}\)

\(=\frac{1}{14}\)

.Thay \(x_2\) vào ta được : \(G=\frac{\left(2-\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)^4+1}\)

\(=\frac{4-4\sqrt{3}+3}{\left(4-4\sqrt{3}+3\right)^2+1}\)

\(=\frac{7-4\sqrt{3}}{\left(7-4\sqrt{3}\right)^2+1}\)

\(=\frac{7-4\sqrt{3}}{49-56\sqrt{3}+48+1}\)

\(=\frac{7-4\sqrt{3}}{98-56\sqrt{3}}\)

\(=\frac{7-4\sqrt{3}}{14.\left(7-4\sqrt{3}\right)}=\frac{1}{14}\)

Vậy giá trị của biểu thức là 1/14