Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GTLN và GTNN của biểu thức này đều ko tồn tại
D sẽ có giá trị lớn tới dương vô cùng khi \(x\) càng gần \(-1\) về bên trái (ví dụ, các giá trị như \(x=-1,00001\) chẳng hạn)
D có giá trị nhỏ tới âm vô cùng khi \(x\) càng gần \(-1\) về bên phải (ví duhj, các giá trị như \(x=-0,99999\))
Đặt \(y=\frac{x}{x^2+1}\Rightarrow y.\left(x^2+1\right)=x\Rightarrow yx^2+y-x=0\)
\(\Delta=1-4y^2\)
Để y xác định thì \(\Delta\ge0\Rightarrow1-4y^2\ge0\Leftrightarrow\frac{-1}{2}\le y\le\frac{1}{2}\)
Vậy GTNN của phân thức trên là -1/2 tại x=-1
GTLN của phên thức trên là 1/2 tại x=1
bạn có thể dùng bđt phụ này :
\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
và đây là cách chứng minh
Bất đẳng thức tương đương :
\(a^2+b^2+a^2+b^2\ge a^2+b^2+2ab\)
\(< =>a^2+b^2\ge2ab\)
\(< =>\left(a-b\right)^2\ge0\)*đúng*
\(S=\sqrt{x-1}+\sqrt{2x^2-5x+7}\)
\(\Rightarrow S^2=2x^2-4x+6+2\sqrt{x-1.2x^2-5x+7}\)
\(=2.x-1^2+4+2\sqrt{x-1.2x^2+5x-7}\ge4\)
\(Min_A=4\Leftrightarrow x=1\)
Vậy: \(x=1\)
P/s: Đúng ko nhỉ?