K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có:

\(F^2=\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)^2\)

\(=\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}+2\left(x^2+y^2+z^2\right)\ge x^2+y^2+z^2+2\left(x^2+y^2+z^2\right)=1+2.1=3\)

\(\Rightarrow F\ge\sqrt{3}\)

Vậy \(Min_F=\sqrt{3}\)khi \(x=y=z=\frac{\sqrt{3}}{3}\)

18 tháng 7 2017

cho mình hỏi từ \(\frac{x^2y^2}{z^2}+\frac{y^2z^2}{x^2}+\frac{z^2x^2}{y^2}\ge x^2+y^2+z^2\)tại sao lại ra được như thế này vậy ạ

AH
Akai Haruma
Giáo viên
24 tháng 5 2018

Lời giải:

Ta có:

\(2x^2+xy+2y^2=\frac{3}{2}(x^2+y^2)+\frac{1}{2}(x^2+2xy+y^2)\)

\(=\frac{3}{2}(x^2+y^2)+\frac{1}{2}(x+y)^2\)

Theo BĐT Bunhiacopxky:

\((x^2+y^2)(1+1)\geq (x+y)^2\Rightarrow \frac{3}{2}(x^2+y^2)\geq \frac{3}{4}(x+y)^2\)

\(\Rightarrow 2x^2+xy+2y^2=\frac{3}{2}(x^2+y^2)+\frac{1}{2}(x+y)^2\geq \frac{5}{4}(x+y)^2\)

\(\Rightarrow \sqrt{2x^2+xy+2y^2}\geq \frac{\sqrt{5}}{2}(x+y)\)

Hoàn toàn tương tự:

\(\sqrt{2y^2+yz+2z^2}\geq \frac{\sqrt{5}}{2}(y+z)\)

\(\sqrt{2z^2+zx+2x^2}\geq \frac{\sqrt{5}}{2}(z+x)\)

Cộng theo vế các BĐT thu được:

\(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\geq \sqrt{5}(x+y+z)=\sqrt{5}\)

Ta có đpcm.

Dấu bằng xảy ra khi \(x=y=z=\frac{1}{3}\)

2 tháng 7 2017

1, A= y^3(1-y)^2 = 4/9 . y^3 . 9/4 (1-y)^2

= 4/9 .y.y.y . (3/2-3/2.y)^2

=4/9 .y.y.y (3/2-3/2.y)(3/2-3/2.y)

<= 4/9 (y+y+y+3/2-3/2.y+3/2-3/2.y)^5

=4/9 . 243/3125

=108/3125

Đến đó tự giải

2 tháng 7 2017


Thử sức với bài 1 xem thế nào :vv
x>0 => 0<x<=1 
f(x)=x^2(1-x)^3
Xét f'(x) = -(x-1)^2x(5x-2) 
Xét f'(x)=0 -> nhận x=2/5 và x=1thỏa mãn đk trên .
 Thử x=1 và x=2/5 nhận x=2/5 hàm số Max tại ddk 0<x<=1 (vậy x=1 loại)
P/s: HS cấp II hong nên làm cách này nhé em :vv 
 

15 tháng 9 2017

Áp dụng bất đẳng thức: x2 + a2y2 \(\ge\)2axy, ta có:

\(\frac{1+\sqrt{5}}{2}\left(xy+yz+zx\right)\le\frac{\frac{1+\sqrt{5}}{2}\left(x^2+y^2\right)+\left[y^2+\left(\frac{1+\sqrt{5}}{2}\right)^2x^2\right]+\left[\left(\frac{1+\sqrt{5}}{2}\right)^2z^2+x^2\right]}{2}\)=

\(\frac{\left(\frac{1+\sqrt{5}}{2}+1\right)\left(x^2+y^2\right)+2\left(\frac{1+\sqrt{5}}{2}\right)^2z^2}{2}\)

15 tháng 9 2017

\(\Rightarrow\left(1+\sqrt{5}\right)\le\frac{3+\sqrt{5}}{2}\left(x^2+y^2\right)+\left(3+\sqrt{5}\right)z^2\)\(\Rightarrow x^2+y^2-2z^2\ge\sqrt{5}-1\)\(\Rightarrow P\ge\sqrt{5}-1\)

Vậy GTNN của P là \(\sqrt{5}-1\)khi \(x=y=\frac{1+\sqrt{5}}{2}z.\)

26 tháng 2 2018

\(VT=\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{xz}}+\frac{z}{\sqrt[3]{xy}}\)

\(\ge\frac{3x}{y+z+1}+\frac{3y}{x+z+1}+\frac{3z}{x+y+1}\)

\(=\frac{3x^2}{xy+xz+x}+\frac{3y^2}{xy+yz+y}+\frac{3z^2}{xz+yz+z}\)

\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)

\(\ge\frac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x^2+y^2+z^2}\)

\(\ge\frac{3\left(x+y+z\right)^2}{\left(x+y+z\right)^2}=3=x^2+y^2+z^2\ge xy+yz+xz=VP\)

Dấu "=" <=> x=y=z=1

2 tháng 2 2019

Áp dụng BĐT AM-GM cho 3 số không âm, ta có: \(0< \sqrt[3]{yz.1}\le\frac{y+z+1}{3}\Rightarrow\frac{x}{\sqrt[3]{yz}}\ge\frac{3x}{y+z+1}\)

Làm tương tự với 2 hạng tử còn lại rồi cộng theo vế thì có:

\(\frac{x}{\sqrt[3]{yz}}+\frac{y}{\sqrt[3]{zx}}+\frac{z}{\sqrt[3]{xy}}\ge3\left(\frac{x}{y+z+1}+\frac{y}{z+x+1}+\frac{z}{x+y+1}\right)\)

\(=3\left(\frac{x^2}{xy+xz+x}+\frac{y^2}{xy+yz+y}+\frac{z^2}{zx+yz+z}\right)\ge^{Schwartz}3.\frac{\left(x+y+z\right)^2}{x+y+z+2\left(xy+yz+zx\right)}\)

\(=3.\frac{x^2+y^2+z^2+2\left(xy+yz+zx\right)}{x+y+z+2\left(xy+yz+zx\right)}\ge9.\frac{xy+yz+zx}{\sqrt{3\left(x^2+y^2+z^2\right)}+2\left(x^2+y^2+z^2\right)}\)

\(=9.\frac{xy+yz+zx}{3+2.3}=xy+yz+zx\) => ĐPCM.

Dấu "=" xảy ra khi x=y=z=1.

NV
22 tháng 10 2019

\(A^2=\left(\frac{xy}{z}+\frac{xz}{y}+\frac{yz}{x}\right)^2\ge3\left(\frac{x^2yz}{yz}+\frac{y^2xz}{xz}+\frac{z^2xy}{xy}\right)=3.2016\)

\(\Rightarrow A\ge\sqrt{3.2016}=12\sqrt{42}\)

Dấu "=" xảy ra khi \(x=y=z=4\sqrt{14}\)

23 tháng 10 2019

Lm sao để cm ra dòng đầu tiên???^_^