Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) pt có 2 nghiệm dương <=> \(\Delta\ge0;\int^{x1+x2>0}_{x1.x2>0}\Leftrightarrow4\left(m+1\right)^2-4\left(m-4\right)\ge0;\int^{2m+2>0}_{m-4>0}\Leftrightarrow4m^2+4m+4+16\ge0;\int^{m>-1}_{m>4}\)
=> m>4. (cái kí hiệu ngoặc kia là kí hiệu và nha. tại trên này không có nên dùng tạm cái ý)
b) áp dụng hệ thức vi ét ta có: x1+x2=2m+2; x1.x2=m-4
\(M=\frac{\left(x1+x2\right)^2-2x1x2}{x1-x1.x2+x2-x1.x2}=\frac{\left(2m+2\right)^2-2\left(m-4\right)}{2m+2-2\left(m-4\right)}=\frac{4m^2+6m+12}{10}=\frac{\left(4m^2+6m+\frac{9}{4}\right)+\frac{39}{4}}{10}=\frac{\left(2m+\frac{3}{2}\right)^2+\frac{39}{4}}{10}\)
ta có: \(\left(2m+\frac{3}{2}\right)^2\ge0\Leftrightarrow\left(2m+\frac{3}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}\Leftrightarrow\frac{\left(2m+\frac{3}{2}\right)^2+\frac{39}{4}}{10}\ge\frac{39}{40}\)=> Min M=39/40 <=>m=-3/4
Ta có \(\Delta'=b'^2-ac=\left(-3\right)^2-m=9-m\)
Để phương trình trên có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow9-m\ge0\Leftrightarrow m\le9\)
Áp dụng Viet, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=6\\x_1x_2=m\end{matrix}\right.\)
a) Ta có:
\(x_1^2+x_2^2=36\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=36\\ \Leftrightarrow6^2-2m=36\Leftrightarrow2m=0\Leftrightarrow m=0\left(tm\right)\)
b) Ta có:
\(\frac{1}{x_1}+\frac{1}{x_2}=3\Leftrightarrow\frac{x_2+x_1}{x_1x_2}=3\Leftrightarrow\frac{6}{m}=3\Leftrightarrow m=2\left(tm\right)\)
c) Ta có:
\(\left\{{}\begin{matrix}x_1+x_2=6\\x_1-x_2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1=10\\x_1-x_2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=5\\x_2=x_1-4=5-4=1\end{matrix}\right.\)
Thay x1; x2 vào x1x2=m, ta có:
\(5\cdot1=m\Leftrightarrow m=5\left(tm\right)\)
\(\Delta'=b'^2-ac=-6m+7=>\)\(m\ge\frac{7}{6}\)
Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{cases}}\)Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}=>\)\(\frac{x_1+x_2}{x_1.x_2}=\frac{x_1+x_2}{5}\)
=> \(x_1.x_2=5\)<=> \(m^2+2m-3=5\)<=> \(m^2+2m-8=0\)
Giải pt trên ta đc : \(\orbr{\begin{cases}m=2\\m=-4\end{cases}}\)Mà \(m\ge\frac{7}{6}\)=> \(m=2\)