K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2021

 

a) Xét ΔAOC vuông tại A và ΔOBD vuông tại B có

OA=OB(gt)

∠Olà góc chung

⇒ΔAOC=ΔOBD(cạnh góc vuông-góc nhọn kề)

b) Xét ΔOIB vuông tại B và ΔOIA vuông tại A có

OI là cạnh chung

OB=OA(gt)

⇒ ΔOIB=ΔOIA(cạnh huyền-cạnh góc vuông)

⇒IB=IA(hai cạnh tương ứng)

Ta có: IB+ID=BD(do B,I,D thẳng hàng)

IA+IC=AC(do A,I,C thẳng hàng)

MàIB=IA(cmt)

và BD=AC(do ΔAOC=ΔOBD)

⇒ ID=IC

Xét ΔIDC có ID=IC(cmt)

⇒ ΔIDC cân tại I

c) Ta có: ΔOIB=ΔOIA(cmt)

⇒∠BIO=∠AIO(hai góc tương ứng)

Mà tia IO nằm giữa hai tia IA,IB

IO là tia phân giác của∠AIB

 

1. Cho tam giác ABC cân ở A, Góc BAC = 1800 . Gọi O là một điểm nằm trên tia phân giác của góc C sao cho góc CBO = 120 . Vẽ tam giác đều BOM ( M và A cùng thuộc nửa mặt phẳng bở BO). Chứng minh 3 điểm C, A, O thẳng hàng2. Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CD lấy điểm N sao cho BM=CN .a. Chứng minh tam giác ABM = tam giác ACNb. Kẻ BH vuông góc AM; CK vuông góc AN (H...
Đọc tiếp

1. Cho tam giác ABC cân ở A, Góc BAC = 1800 . Gọi O là một điểm nằm trên tia phân giác của góc C sao cho góc CBO = 120 . Vẽ tam giác đều BOM ( M và A cùng thuộc nửa mặt phẳng bở BO). Chứng minh 3 điểm C, A, O thẳng hàng

2. Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CD lấy điểm N sao cho BM=CN .
a. Chứng minh tam giác ABM = tam giác ACN
b. Kẻ BH vuông góc AM; CK vuông góc AN (H thuộc AM; K thuộc AN ). Chứng minh AH = AK.
c. Gọi O là giao điểm của BH và KC. Tam giác OBC là tam giác gì ? Vì sao ?

3. Cho tam giác ABD, có góc B = 2 góc D, kẻ AH vuông góc với BD (H thuộc BD ). Trên tia đối của BA lấy BE=BH. Đường thẳng EH cắt AD tại F. Chứng minh FH=FA=FD

4. Cho góc nhọn  \(\widehat{xOy}\) . Gọi I là một điểm thuộc tia phân giác của \(\widehat{xOy}\). Kẻ IA \(\perp\) Ox (Điểm A thuộc tia Ox ) và IB \(\perp\)  Oy (Điểm B thuộc tia Oy )

a. Chứng minh IA = IB

b. Cho biết OI = 10cm, AI = 6cm. Tính OA

c. Gọi K là giao điểm của  BI và Ox và M là giao điểm của AI với Oy. Chứng minh ba điểm B, K, C thẳng hàng

 

 

1
11 tháng 2 2016

Câu 1 trước

a) Xét ΔAOC vuông tại A và ΔOBD vuông tại B có

OA=OB(gt)

\(\widehat{O}\) là góc chung

Do đó: ΔAOC=ΔOBD(cạnh góc vuông-góc nhọn kề)

b) Xét ΔOIB vuông tại B và ΔOIA vuông tại A có

OI là cạnh chung

OB=OA(gt)

Do đó: ΔOIB=ΔOIA(cạnh huyền-cạnh góc vuông)

⇒IB=IA(hai cạnh tương ứng)

Ta có: IB+ID=BD(do B,I,D thẳng hàng)

IA+IC=AC(do A,I,C thẳng hàng)

mà IB=IA(cmt)

và BD=AC(do ΔAOC=ΔOBD)

nên ID=IC

Xét ΔIDC có ID=IC(cmt)

nên ΔIDC cân tại I(định nghĩa tam giác cân)

c) Ta có: ΔOIB=ΔOIA(cmt)

nên \(\widehat{BIO}=\widehat{AIO}\)(hai góc tương ứng)

mà tia IO nằm giữa hai tia IA,IB

nên IO là tia phân giác của \(\widehat{AIB}\)(đpcm)

d) Ta có: ΔAOC=ΔOBD(cmt)

⇒OC=OD(hai cạnh tương ứng)

Xét ΔOCD có OC=OD(cmt)

nên ΔOCD cân tại O(định nghĩa tam giác cân)

mà OK là đường cao ứng với cạnh CD(IK⊥DC,O∈IK)

nên OK là đường phân giác ứng với cạnh CD

⇒OK là tia phân giác của \(\widehat{COD}\)

hay OK là tia phân giác của \(\widehat{AOB}\)

Ta có: ΔOIB=ΔOIA(cmt)

\(\widehat{IOB}=\widehat{IOA}\)(hai góc tương ứng)

mà tia OI nằm giữa hai tia OA,OB

nên OI là tia phân giác của \(\widehat{AOB}\)

Ta có: OI là tia phân giác của \(\widehat{AOB}\)(cmt)

OK là tia phân giác của \(\widehat{AOB}\)(cmt)

mà OI và OK có điểm chung là O

nên O,I,K thẳng hàng

12 tháng 12 2016

Ai giúp mk với mai mk phải nộp rồi