Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những bài này có thể search trên google trước khi làm nhé
Link tham khảo :
Câu hỏi của Vương Hàn - Toán lớp 7 | Học trực tuyến
Good Luck
tự kẻ hình nha
a) vì Ox là p/g của AOB=> AOx=BOx=AOB/2=150/2=75 độ
ta có DOy=180 độ-90 độ- 75 độ=15 độ ( BOD=90 độ)
COy=180 độ-90 độ-75 độ=15 độ (AOC=90 độ)
=> DOy=COy=15 độ=> Oylà p/g của COD
b) ta có xOC=AOx+AOC=75+90
yOB=yOD+BOD=15+90
=> xOC>yOB
A B C x y
\(\widehat{xOA}=\widehat{cOA}\) (gt) (1)
\(\widehat{yOB}=\widehat{COB}\) (gt) (2)
\(\widehat{COA}+\widehat{COB}=\widehat{AOB}=90^o\) (3)
Từ (1) (2) (3) \(\Rightarrow\widehat{xOA}+\widehat{yOB}=90^o\)
\(\Rightarrow\widehat{xOy}=\widehat{COA}+\widehat{COB}+\widehat{xOA}+\widehat{yOB}=90^o+90^o=180^o\)
=> Ox và Oy là hai tia đối nhau
ta có: AOB+BOC=160O
→AOB+(AOC+1000)= 160O+1000=2600
HAY 2AOB=2600
→AOB=1300
BOC=300
B, vi tia OD thuoc goc AOB →OB nam giua OC VA OD
vi BOC=300 MA DOC= 900
→OB ko phai la tia phan giac cua BOC
c,
Ta có hình vẽ
A B C O D
Gọi OD là tia đối của tia OA
Ta có \(\widehat{AOB}+\widehat{BOC}+\widehat{AOC}=360^o\)
Mà \(\widehat{AOB}=\widehat{BOC}=\widehat{AOC}\)suy ra \(\widehat{AOB}=\widehat{BOC}=\widehat{AOC}=360^o:3=120^o\)
Vì OA là tia đối của tia OD suy ra \(\widehat{AOB}+\widehat{BOD}=180^o\)( hai góc kề bù (
Mà \(\widehat{AOB}=120^o\)nên \(\widehat{BOD}=60^o\)
Ta thấy tia OD nằm giữa tia OB và tia OC nên \(\widehat{BOD}+\widehat{DOC}=\widehat{BOC}\)
Mà \(\widehat{BOC}=120^o;\widehat{BOD}=60^o\)nên \(\widehat{DOC}=60^o\)
Vì \(\widehat{DOC}=\widehat{DOB}=60^o\)và tia OD nằm giữa tia OB và tia OC nên OD là tia phân giác của góc BOC
Khi đó tia đối của tia OA là tia phân giác của góc BOC
Tương tự tia đối của tia OB;OC cũng là tia phân giác của góc AOC và góc AOB
Vậy...
Cảm ơn bạn Mon nhìu nha
Mặc dù không đầy đủ lắm nhưng mình coi đó là 1 gợi ý lớn cho mình
1 lần nữa cảm ơn!
a ) Vì Oa ⊥⊥ OM
=> aOmˆaOm^ = 90o
Mà MOaˆMOa^ + aONˆaON^ = MONˆMON^
=> aOnˆaOn^ = MONˆMON^ - MOaˆMOa^ = 120o - 90o = 30o
Vậy aONˆaON^ = 30o
Vì Ob ⊥⊥ ON
=> bONˆbON^ = 90o
Mà bOMˆbOM^ + bONˆbON^ = MONˆMON^
=> bOMˆbOM^= MONˆMON^ - bONˆbON^ = 120o - 90o = 30o
Vậy bOMˆbOM^ = aONˆ