K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2015

\(\left(x-\frac{9}{4}\right)\left(x+\frac{4}{3}\right)\left(120x^3+12x^2-24x+36\right)\)

29 tháng 8 2015

Cách làm như thế nào hả bạn?

23 tháng 12 2016

a, \(x^4+6x^3+7x^2-6x+1\)

\(=x^4-2x^2+1+6x^3+9x^2+6x\)

\(=\left(x^2-1\right)^2+6x\left(x^2-1\right)+9x^2\)

\(=\left(x^2-1+3x\right)^2\)

b, \(x^4-7x^3+14x^2-7x+1\)

\(=x^4+2x^2+1+7x^3+12x^2-7x\)

\(=\left(x^2+1\right)^2-7x\left(x^2+1\right)+12^2\)

\(=\left(x^2-1+3x\right)^2\)

c, \(12x^2-11x-36\)

\(=12x^2-27x+16x-36\)

\(=3x\left(4x-9\right)+4\left(4x-9\right)\)

\(=\left(4x-9\right)\left(3x+4\right)\)

29 tháng 8 2018

mk viết đáp án, ko biết biến đổi ib mk

a)  \(x^3+3x^2y-9xy^2+5y^3=\left(x+5y\right)\left(x-y\right)^2\)

b)    \(x^4+x^3+6x^2+5x+5=\left(x^2+5\right)\left(x^2+x+1\right)\)

c)   \(x^4-2x^3-12x^2+12x+36=\left(x^2-6\right)\left(x^2-2x-6\right)\)

d)   \(x^8y^8+x^4y^4+1=\left(x^2y^2-xy+1\right)\left(x^2y^2+xy+1\right)\left(x^4y^4-x^2y^2+1\right)\)

7 tháng 11 2016

a/ \(x^3-5x^2+6x+3=\left(x-2\right)\left(x^2-3x\right)+3.\)( Dùng phép chia đa thức)

Để A chia hết cho x-2 thì 3 phải chia hết cho x-2 => x-2 là ước của 3

=> x-2={3-; -1; 1; 3} => x={-1; 1; 3; 5}

b/ Chia F(x) cho x-1

\(f\left(x\right)=\left(x-1\right)\left(x^2-5x+6\right)\)

Giải phương trình bậc 2 \(x^2-5x+6=0\) để tìm nghiệm còn lại

8 tháng 8 2018

\(x^3+2x^2+2x+1=\left(x^3+1\right)+\left(2x^2+2x\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)

\(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27\)

\(=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)

\(x^4+2x^3+2x^2+2x+1=x^4+x^2+2x^3+x^2+2x+1\)

\(=x^2\left(x^2+1\right)+2x\left(x^2+1\right)+\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^2+2x+1\right)\)

\(=\left(x^2+1\right)\left(x+1\right)^2\)

\(x^4-2x^3+2x-1=\left(x^4-1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+1\right)-2x\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+1-2x\right)=\left(x^2-1\right)\left(x-1\right)^2\)

8 tháng 8 2018

\(x^3+2x^2+2x+1=\left(x^3+x^2\right)+\left(x^2+x\right)+\left(x+1\right)\)

                                    \(=x^2.\left(x+1\right)+x.\left(x+1\right)+\left(x+1\right)\)

                                   \(=\left(x+1\right).\left(x^2+x+1\right)\)

\(x^3-4x^2+12x-27\)

\(=\left(x^3-x^2\right)-\left(3x^2-3x\right)+\left(9x-27\right)\)

\(=x^2.\left(x-1\right)-3x.\left(x-1\right)+9.\left(x-3\right)\)

\(=\left(x-1\right).\left(x^2-3x\right)+9.\left(x-3\right)\)

\(=x.\left(x-1\right).\left(x-3\right)+9.\left(x-3\right)\)

\(=\left(x-3\right)\left[x.\left(x-1\right)+9\right]\)

28 tháng 6 2018

1/ 

a, x2+36=12x

<=>x2-12x+36=0 

<=>(x-6)2=0

<=>x-6=0

<=>x=6

b, 5x(x-3)+3-x=0

<=>5x(x-3)-(x-3)=0

<=>(5x-1)(x-3)=0

<=>\(\orbr{\begin{cases}5x-1=0\\x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=3\end{cases}}}\)

2/ Sửa đề x2z2 = y2z2

Đặt \(A=4x\left(x+y\right)\left(x+y+z\right)\left(x+z\right)+y^2z^2=4x\left(x+y+z\right)\left(x+y\right)\left(x+z\right)+y^2z^2\)

\(=4\left(x^2+xy+xz\right)\left(x^2+xz+xy+yz\right)+y^2z^2\)

Đặt x2+xy+xz=t, ta có 

\(A=4t\left(t+yz\right)+y^2z^2=4t^2+4tyz+y^2z^2=\left(2t+yz\right)^2=\left(2x^2+2xy+2xz+y^2z^2\right)^2\ge0\)

20 tháng 4 2017

a) x2 – 4 + (x – 2)2

= (x2 – 22) + (x – 2)2 = (x – 2)(x + 2) + (x – 2)2

= (x – 2) [(x + 2) + (x – 2)]

= (x – 2)(x + 2 + x – 2)

= 2x(x – 2)

b) x3 – 2x2 + x – xy2

= x(x2 – 2x + 1 – y2) = x[(x2 – 2x + 1) – y2]

= x[(x – 1)2 – y2]

= x[(x – 1) + y] [(x – 1) – y]

= x(x – 1 + y)(x – 1 – y)

c) x3 – 4x2 – 12x + 27

= (x3 + 27) – 4x(x + 3)

= (x + 3)(x2 – 3x + 9) – 4x(x + 3)

= (x + 3)(x2 – 3x + 9 – 4x)

= (x + 3)(x2 – 7x + 9)