K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2018

        \(\frac{x^2-yz}{a}=\frac{y^2-zx}{b}=\frac{z^2-xy}{c}\)

\(\Leftrightarrow\)\(\frac{a}{x^2-yz}=\frac{b}{y^2-zx}=\frac{c}{z^2-xy}\)

\(\Leftrightarrow\)\(\frac{a^2}{\left(x^2-yz\right)^2}=\frac{b^2}{\left(y^2-zx\right)^2}=\frac{c^2}{\left(z^2-xy\right)^2}=\frac{ab}{\left(x^2-yz\right)\left(y^2-zx\right)}=\frac{bc}{\left(y^2-zx\right)\left(z^2-xy\right)}=\frac{ca}{\left(z^2-xy\right)\left(x^2-yz\right)}\left(1\right)\)

Áp dụng tính chất tỉ lệ thức ta có:

\(\frac{a^2}{\left(x^2-yz\right)^2}=\frac{bc}{\left(y^2-zx\right)\left(z^2-xy\right)}=\frac{a^2-bc}{\left(x^2-yz\right)^2-\left(y^2-zx\right)\left(z^2-xy\right)}=\frac{a^2-bc}{x\left(x^3+y^3+z^3-3xyz\right)}\)   (2)

\(\frac{b^2}{\left(y^2-zx\right)^2}=\frac{ac}{\left(x^2-yz\right)\left(z^2-xy\right)}=\frac{b^2-ac}{\left(y^2-zx\right)^2-\left(x^2-yz\right)\left(z^2-xy\right)}=\frac{b^2-ca}{y\left(x^3+y^3+z^3-3xyz\right)}\)   (3)

\(\frac{c^2}{\left(z^2-xy\right)}=\frac{ab}{\left(x^2-yz\right)\left(y^2-xz\right)}=\frac{c^2-ab}{\left(z^2-xy\right)-\left(x^2-yz\right)\left(y^2-xz\right)}=\frac{c^2-ab}{z\left(x^3+y^3+z^3-3xyz\right)}\)     (4)

Từ  (1),  (2), (3), (4)   suy ra:

\(\frac{a^2-bc}{x}=\frac{b^2-ca}{y}=\frac{c^2-ab}{z}\)

P/S: mk mới lớp 8 nên cx ko bít lm đúng hay sai, bn tham khảo thôi nhé

22 tháng 10 2016

Đặt \(\frac{x^2-yz}{a}=\frac{y^2-zx}{b}=\frac{z^2-xy}{c}=k\)

\(\Rightarrow\begin{cases}a=\frac{x^2-yz}{k}\\b=\frac{y^2-zx}{k}\\c=\frac{z^2-xy}{k}\end{cases}\)

Ta có:

\(\frac{a^2-bc}{x}=\frac{\left(\frac{x^2-yz}{k}\right)^2-\frac{y^2-zx}{k}.\frac{z^2-xy}{k}}{x}=\frac{\frac{x^4-2x^2yz+\left(yz\right)^2}{k^2}-\frac{\left(y^2-zx\right).\left(z^2-xy\right)}{k^2}}{x}\)

\(=\frac{\frac{\left(x^4-2x^2yz+y^2z^2\right)-\left(y^2z^2-z^3x-xy^3+x^2zy\right)}{k^2}}{x}\)

\(=\frac{\frac{x^4-2x^2yz+y^2z^2-y^2z^2+z^3x+xy^3-x^2zy}{k^2}}{x}=\frac{x^4++z^3x+xy^3-3x^2yz}{k^2}.\frac{1}{x}=\frac{x^3+y^3+z^3-3xyz}{k^2}\)

Tương tự thay a;b;c vào \(\frac{b^2-ca}{y};\frac{c^2-ab}{z}\) ta cũng được \(\frac{b^2-ca}{y}=\frac{c^2-ab}{z}=\frac{x^3+y^3+z^3-3xyz}{k^2}\)

Vậy \(\frac{a^2-bc}{x}=\frac{b^2-ca}{y}=\frac{c^2-ab}{z}\left(đpcm\right)\)

 

20 tháng 10 2017

vì có 1 chút nhầm lẫn nên giờ mk mới ra mong bạn thứ lỗi

bài 1

\(\Leftrightarrow\frac{4a^4}{2a^3+2a^2b^2}+\frac{4b^4}{2b^3+2c^2b^2}+\frac{4c^4}{2c^3+2a^2c^2}\)

\(\ge\frac{\left(2a^2+2b^2+2c^2\right)^2}{2a^3+2b^3+2c^3+2a^2b^2+2c^2b^2+2a^2c^2}\)

\(\ge\frac{36}{a^4+a^2+b^4+b^2+c^4+c^2+2a^2b^2+2c^2b^2+2a^2c^2}\)

\(=\frac{36}{\left(a^2+b^2+c^2\right)^2+a^2+b^2+c^2}=3\ge a+b+c\)

Dấu bằng xảy ra khi \(a=b=c=1\)

26 tháng 4 2020

Bài 2 là chuyên Bình Thuận, 2016-2017

Áp dụng bất đẳng thức Cauchy – Schwarz, ta có:

\(\frac{xy}{x^2+yz+zx}\le\frac{xy\left(y^2+yz+zx\right)}{\left(x^2+yz+zx\right)\left(y^2+yz+zx\right)}\le\frac{xy\left(y^2+yz+zx\right)}{\left(xy+yz+zx\right)^2}\)

Tương tự: \(\frac{yz}{y^2+zx+xy}\le\frac{xy\left(z^2+zx+xy\right)}{\left(xy+yz+zx\right)^2}\);\(\frac{zx}{z^2+xy+yz}\le\frac{zx\left(x^2+xy+yz\right)}{\left(xy+yz+zx\right)^2}\)

Cộng từng vế của 3 BĐT trên. ta được:

\(VT\le\frac{\left(x^2+y^2+z^2\right)\left(xy+yz+zx\right)}{\left(xy+yz+zx\right)^2}=\frac{x^2+y^2+z^2}{xy+yz+zx}\)

Đẳng thức xảy ra khi x = y = z

AH
Akai Haruma
Giáo viên
5 tháng 1 2020

Vì đã khuya nên não cũng không còn hoạt động tốt nữa, mình làm bài 1 thôi nhé.

Bài 1:

a)

\(2\text{VT}=\sum \frac{2bc}{a^2+2bc}=\sum (1-\frac{a^2}{a^2+2bc})=3-\sum \frac{a^2}{a^2+2bc}\)

Áp dụng BĐT Cauchy-Schwarz:

\(\sum \frac{a^2}{a^2+2bc}\geq \frac{(a+b+c)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{(a+b+c)^2}{(a+b+c)^2}=1\)

Do đó: \(2\text{VT}\leq 3-1\Rightarrow \text{VT}\leq 1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

b)

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\sum \frac{ab^2}{a^2+2b^2+c^2}=\sum \frac{ab^2}{\frac{a^2+b^2+c^2}{3}+\frac{a^2+b^2+c^2}{3}+\frac{a^2+b^2+c^2}{3}+b^2}\leq \sum \frac{1}{16}\left(\frac{9ab^2}{a^2+b^2+c^2}+\frac{ab^2}{b^2}\right)\)

\(=\frac{1}{16}.\frac{9(ab^2+bc^2+ca^2)}{a^2+b^2+c^2}+\frac{a+b+c}{16}(1)\)

Áp dụng BĐT AM-GM:

\(3(ab^2+bc^2+ca^2)\leq (a^2+b^2+c^2)(a+b+c)\)

\(\Rightarrow \frac{1}{16}.\frac{9(ab^2+bc^2+ca^2)}{a^2+b^2+c^2)}\leq \frac{3}{16}(a+b+c)(2)\)

Từ $(1);(2)\Rightarrow \text{VT}\leq \frac{a+b+c}{4}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c$

AH
Akai Haruma
Giáo viên
5 tháng 1 2020

Lý giải xíu chỗ $3(ab^2+bc^2+ca^2)\leq (a^2+b^2+c^2)(a+b+c)$ cho bạn nào chưa rõ:

Áp dụng BĐT AM-GM:

$(a^2+b^2+c^2)(a+b+c)=(a^3+ac^2)+(b^3+a^2b)+(c^3+b^2c)+(ab^2+bc^2+ca^2)$

$\geq 2a^2c+2ab^2+2bc^2+(ab^2+bc^2+ca^2)=3(ab^2+bc^2+ca^2)$

15 tháng 8 2017

3) \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=1\)

\(\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\right)\left(a+b+c\right)=a+b+c\)

\(\dfrac{a^2+a\left(b+c\right)}{b+c}+\dfrac{b^2+b\left(a+c\right)}{a+c}+\dfrac{c^2+c\left(a+b\right)}{a+b}=a+b+c\)

\(\dfrac{a^2}{b+c}+a+\dfrac{b^2}{a+c}+b+\dfrac{c^2}{a+b}+c=a+b+c\)

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{a+c}+\dfrac{c^2}{a+b}=0\)

Vậy: \(P=0\)

15 tháng 8 2017

Thank youeoeo

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

15 tháng 8 2017

Câu 2/

Ta có: \(\frac{xy+2y+1}{xy+x+y+1}=1+\frac{y-x}{xy+x+y+1}\)

\(=1+\frac{\left(y+1\right)-\left(x+1\right)}{\left(x+1\right)\left(y+1\right)}\)

\(=1+\frac{1}{x+1}-\frac{1}{y+1}\)

Tương tự ta có:

\(\hept{\begin{cases}\frac{yz+2z+1}{yz+y+z+1}=1+\frac{1}{y+1}-\frac{1}{z+1}\\\frac{zx+2x+1}{zx+z+x+1}=1+\frac{1}{z+1}-\frac{1}{x+1}\end{cases}}\)

\(\Rightarrow P=3\)        

15 tháng 8 2017

Câu 3/ 

Ta có:

\(\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\left(a+b+c\right)=1a+b+c+\left(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\right)\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)