K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

áp dụng t/c dãy tỉ số bằng nhau

5 tháng 8 2017

a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}=\dfrac{x-3y+4z}{4-3.3+4.9}=\dfrac{63}{31}=2\)

\(\Rightarrow x=8\)

\(\Rightarrow y=6\)

\(\Rightarrow z=18\)

b. c. Xem lại đề.

28 tháng 6 2017

bài 3:

a, đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)

=>x=12k,y=9k,z=5k

ta có: ayz=20=> 12k.9k.5k=20

=> (12.9.5)k^3=20

=>540.k^3=20

=>k^3=20/540=1/27

=>k=1/3

=>x=12.1/3=4

y=9.1/3=3

z=5.1/3=5/3

vậy x=4,y=3,z=5/3

b,ta có: \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)

A/D tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2-z^2}{25+49-9}=\dfrac{585}{65}=9\)

=>x=5.9=45

y=7.9=63

z=3*9=27

vậy x=45,y=63,z=27

28 tháng 6 2017

Theo mình thì bạn nên đăng từng câu hỏi chứ đăng 1 lượt thế này có 1 số bạn thấy dài quá ko mún làm và mình cũng ở trong số đó.vui

14 tháng 7 2018

\(\dfrac{2x}{5}=\dfrac{3y}{4}=\dfrac{4z}{5}\)

\(\Rightarrow\dfrac{2}{5}x=\dfrac{3}{4}y=\dfrac{4}{5}z\)

\(\Rightarrow\dfrac{2}{5}x.\dfrac{1}{12}=\dfrac{3}{4}y.\dfrac{1}{12}=\dfrac{4}{5}z.\dfrac{1}{12}\)

\(\Rightarrow\dfrac{x}{30}=\dfrac{y}{16}=\dfrac{z}{15}\)

Đặt \(\dfrac{x}{30}=\dfrac{y}{16}=\dfrac{z}{15}=k\Rightarrow\left\{{}\begin{matrix}x=30k\\y=16k\\z=15k\end{matrix}\right.\). Ta có:

\(x+y+z=49\)

\(\Rightarrow30k+16k+15k=49\)

\(\Rightarrow61k=49\)

\(\Rightarrow k=\dfrac{49}{61}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{49}{61}.30=\dfrac{1470}{61}\\y=\dfrac{49}{61}.16=\dfrac{784}{61}\\z=\dfrac{49}{61}.15=\dfrac{735}{61}\end{matrix}\right.\)

10 tháng 3 2018

2)\(x+y+z=9^2=81\)

Ta có:\(\dfrac{x}{3}=\dfrac{y}{4}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}\left(1\right)\)

\(\dfrac{y}{5}=\dfrac{z}{7}\Rightarrow\dfrac{y}{20}=\dfrac{z}{28}\left(2\right)\)

Từ (1) và (2)\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)

\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{x+y+z}{15+20+28}=\dfrac{81}{63}=\dfrac{9}{7}\)

\(\Rightarrow x=\dfrac{135}{7};y=\dfrac{180}{7};z=36\)

Bài 1:

a: =>3x-3-4=0

=>3x=7

hay x=7/3

b: =>2x-2+3x+6=0

=>5x+4=0

hay x=-4/5

c: =>\(4x^2+4x-1=0\)

hay \(x\in\left\{\dfrac{-1+\sqrt{2}}{2};\dfrac{-1-\sqrt{2}}{2}\right\}\)

d: \(\Leftrightarrow3x-3+2x-4+6=0\)

=>5x+1=0

hay x=-1/5

3 tháng 3 2018

\(y=\dfrac{3x+2}{3}+\dfrac{-2x+1}{2}\)

\(\Rightarrow y=\dfrac{2\left(3x+2\right)}{6}+\dfrac{3\left(-2x+1\right)}{6}\)

\(\Rightarrow y=\dfrac{2\left(3x+2\right)+3\left(-2x+1\right)}{6}\)

\(\Rightarrow y=\dfrac{6x+4-6x+3}{6}=\dfrac{7}{6}\)

AH
Akai Haruma
Giáo viên
24 tháng 4 2018

Lời giải:

Ta có :

\(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)

\(B=\frac{(x-z)(y-x)(z+y)}{xyz}\)

Vì \(x-y-z=0\Rightarrow x=y+z\). Do đó:

\(B=\frac{(y+z-z)[y-(y+z)](z+y)}{yz(y+z)}\)

\(B=\frac{y(-z)(z+y)}{yz(y+z)}=\frac{-yz(y+z)}{yz(y+z)}=-1\)

\(\dfrac{3}{2}x=\dfrac{4}{3}y=\dfrac{5}{4}z\Rightarrow\dfrac{x}{\dfrac{2}{3}}=\dfrac{y}{\dfrac{3}{4}}=\dfrac{z}{\dfrac{4}{5}}\\ \Rightarrow\dfrac{x}{\dfrac{2}{3}}=\dfrac{2y}{\dfrac{3}{2}}=\dfrac{z}{\dfrac{4}{5}}=\dfrac{x-2y+z}{\dfrac{2}{3}-\dfrac{3}{2}+\dfrac{4}{5}}=-\dfrac{16}{-\dfrac{1}{30}}=480\)

suy ra: \(x=\dfrac{480}{\dfrac{2}{3}}=720\\ 2y=\dfrac{480}{\dfrac{3}{2}}=320\Rightarrow y=160\\ z=\dfrac{480}{\dfrac{4}{5}}=600\)

29 tháng 7 2017

Ta có:

\(\dfrac{3}{2}x=\dfrac{4}{3}y=\dfrac{5}{4}z\Rightarrow\dfrac{x}{\dfrac{2}{3}}=\dfrac{y}{\dfrac{3}{4}}=\dfrac{z}{\dfrac{4}{5}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{\dfrac{2}{3}}=\dfrac{y}{\dfrac{3}{4}}=\dfrac{z}{\dfrac{4}{5}}=\dfrac{2y}{\dfrac{3}{2}}=\dfrac{x-2y+z}{\dfrac{2}{3}-\dfrac{3}{2}+\dfrac{4}{5}}=\dfrac{-16}{\dfrac{-1}{30}}=480\)

\(\Rightarrow\left\{{}\begin{matrix}x=320\\y=360\\z=384\end{matrix}\right.\)

Vậy...