Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3 :
a) \(A=\dfrac{1}{3.5}+\dfrac{1}{5.7}+...........+\dfrac{1}{2017.2019}\)
\(\Leftrightarrow2A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+.........+\dfrac{2}{2017.2019}\)
\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+......+\dfrac{1}{2017}-\dfrac{1}{2019}\)
\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{2019}\)
\(\Leftrightarrow2A=\dfrac{672}{2019}\)
\(\Leftrightarrow A=\dfrac{336}{2019}\)
b) \(B=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+.........+\dfrac{1}{132}\)
\(\Leftrightarrow B=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+............+\dfrac{1}{11.12}\)
\(\Leftrightarrow B=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+......+\dfrac{1}{11}-\dfrac{1}{12}\)
\(\Leftrightarrow B=\dfrac{1}{2}-\dfrac{1}{12}=\dfrac{5}{12}\)
1.
Để \(\overline{25a89b}⋮2\Rightarrow b\in\left\{0;2;4;6;8\right\}\)
Để \(\overline{25a89b}\) chia 5 dư 3 \(\Rightarrow b\in\left\{3;8\right\}\)
Để thỏa mãn hai điều kiện trên thì \(b=8\)
Để \(\overline{25a898}⋮9\Rightarrow\left(2+5+a+8+9+8\right)⋮9\Leftrightarrow32+a⋮9\Rightarrow a=4\)
Vậy \(a=4;b=8\); số cần tìm là \(254898\)
Áp dụng tính chất phân phối, rồi tính giá trị biểu thức.
Chẳng hạn,
Với , thì
ĐS. ; C = 0.
Xem thêm tại: http://loigiaihay.com/bai-77-trang-39-phan-so-hoc-sgk-toan-6-tap-2-c41a5943.html#ixzz4eU1fQCGw
a)\(\dfrac{3}{10}\)-x=\(\dfrac{25}{30}\)-\(\dfrac{4}{30}\)
\(\dfrac{3}{10}-x=\dfrac{7}{10}\)
x = \(\dfrac{3}{10}-\dfrac{7}{10}\)
x=\(\dfrac{-4}{10}\)
b)\(\dfrac{-5}{8}+x=\dfrac{4}{9}-\dfrac{63}{9}\)
\(\dfrac{-5}{9}+x=\dfrac{-59}{9}\)
\(x=\dfrac{-59}{9}-\dfrac{-5}{9}\)
\(x=\dfrac{-64}{9}\)
c)=>2.18=(x-3).(x-3)
=>36=(x-3)\(^2\)
=>6\(^2\)=(x-3)\(^2\)
6= x-3
x=6+3=9
Bài 1:
a) \(\dfrac{2}{5}\cdot x-\dfrac{1}{4}=\dfrac{1}{10}\)
\(\dfrac{2}{5}\cdot x=\dfrac{1}{10}+\dfrac{1}{4}\)
\(\dfrac{2}{5}\cdot x=\dfrac{7}{20}\)
\(x=\dfrac{7}{20}:\dfrac{2}{5}\)
\(x=\dfrac{7}{8}\)
Vậy \(x=\dfrac{7}{8}\).
b) \(\dfrac{3}{5}=\dfrac{24}{x}\)
\(x=\dfrac{5\cdot24}{3}\)
\(x=40\)
Vậy \(x=40\).
c) \(\left(2x-3\right)^2=16\)
\(\left(2x-3\right)^2=4^2\)
\(\circledast\)TH1: \(2x-3=4\\ 2x=4+3\\ 2x=7\\ x=\dfrac{7}{2}\)
\(\circledast\)TH2: \(2x-3=-4\\ 2x=-4+3\\ 2x=-1\\ x=\dfrac{-1}{2}\)
Vậy \(x\in\left\{\dfrac{7}{2};\dfrac{-1}{2}\right\}\).
Bài 2:
a) \(25\%-4\dfrac{2}{5}+0.3:\dfrac{6}{5}\)
\(=\dfrac{1}{4}-\dfrac{22}{5}+\dfrac{3}{10}:\dfrac{6}{5}\)
\(=\dfrac{1}{4}-\dfrac{22}{5}+\dfrac{3}{10}\cdot\dfrac{5}{6}\)
\(=\dfrac{1}{4}-\dfrac{22}{5}+\dfrac{1}{4}\)
\(=\dfrac{5}{20}-\dfrac{88}{20}+\dfrac{5}{20}\)
\(=\dfrac{5-88+5}{20}\)
\(=\dfrac{78}{20}=\dfrac{39}{10}\)
b) \(\left(\dfrac{1}{6}-\dfrac{1}{5^2}\cdot5+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=\left(\dfrac{1}{6}-\dfrac{1}{25}\cdot5+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=\left(\dfrac{1}{6}-\dfrac{1}{5}+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=\left(\dfrac{5}{30}-\dfrac{6}{30}+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=\left(\dfrac{5-6+1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=0\cdot\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=0\)
Bài 3:
a) \(\dfrac{4}{19}\cdot\dfrac{-3}{7}+\dfrac{-3}{7}\cdot\dfrac{15}{19}\)
\(=\dfrac{-3}{7}\left(\dfrac{4}{19}+\dfrac{15}{19}\right)\)
\(=\dfrac{-3}{7}\cdot1\)
\(=\dfrac{-3}{7}\)
b) \(7\dfrac{5}{9}-\left(2\dfrac{3}{4}+3\dfrac{5}{9}\right)\)
\(=\dfrac{68}{9}-\dfrac{11}{4}-\dfrac{32}{9}\)
\(=\dfrac{68}{9}-\dfrac{32}{9}-\dfrac{11}{4}\)
\(=4-\dfrac{11}{4}\)
\(=\dfrac{16}{4}-\dfrac{11}{4}\)
\(\dfrac{5}{4}\)
Bài 4:
\(\dfrac{4}{12\cdot14}+\dfrac{4}{14\cdot16}+\dfrac{4}{16\cdot18}+...+\dfrac{4}{58\cdot60}\)
\(=2\left(\dfrac{1}{12\cdot14}+\dfrac{1}{14\cdot16}+\dfrac{1}{16\cdot18}+...+\dfrac{1}{58\cdot60}\right)\)
\(=2\left(\dfrac{1}{12}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{18}+...+\dfrac{1}{58}-\dfrac{1}{60}\right)\)
\(=2\left(\dfrac{1}{12}-\dfrac{1}{60}\right)\)
\(=2\left(\dfrac{5}{60}-\dfrac{1}{60}\right)\)
\(=2\cdot\dfrac{1}{15}\)
\(=\dfrac{2}{15}\)
a)
\(A=\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2006.2009}\)
\(=\frac{8-5}{5.8}+\frac{11-8}{8.11}+\frac{14-11}{11.14}+....+\frac{2009-2006}{2006.2009}\)
\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{2006}-\frac{1}{2009}\)
\(=\frac{1}{5}-\frac{1}{2009}=\frac{2004}{10045}\)
b)
\(B=\frac{1}{6.10}+\frac{1}{10.14}+...+\frac{1}{402.406}\)
\(\Rightarrow 4B=\frac{4}{6.10}+\frac{4}{10.14}+...+\frac{4}{402.406}\)
\(4B=\frac{10-6}{6.10}+\frac{14-10}{10.14}+...+\frac{406-402}{402.406}\)
\(4B=\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+...+\frac{1}{402}-\frac{1}{406}\)
\(4B=\frac{1}{6}-\frac{1}{406}=\frac{100}{609}\Rightarrow B=\frac{25}{609}\)
Cho \(A=\dfrac{\dfrac{-5}{8}.\dfrac{3}{7}+\dfrac{3}{7}.\dfrac{3}{4}+\dfrac{1}{7}.\dfrac{1}{2}+\dfrac{15}{8}}{a+\dfrac{5}{6}-\left(\dfrac{-1}{3}\right)}\)
a) Rút gọn A?
b) Tính A khi a=75%
c) Tìm a để A=50%
d) Tìm a thuộc Z để A là số nguyên.
e) Với a = bao nhiêu để A có giá trị bằng với giá trị của biểu thức:
\(B=\dfrac{\dfrac{2}{3}.\dfrac{15}{6}+\left(-0,5\right)^3}{\dfrac{1}{9}.6^2-5\dfrac{1}{3}}\)
Giải
a, Ta có:
\(A=\dfrac{\dfrac{-5}{8}.\dfrac{3}{7}+\dfrac{3}{7}.\dfrac{3}{4}+\dfrac{3}{7}.\dfrac{1}{6}+\dfrac{1}{8}.15}{a+\dfrac{5}{6}+\dfrac{1}{3}}\)
\(A=\dfrac{\dfrac{3}{7}.\left(\dfrac{-5}{8}+\dfrac{3}{4}+\dfrac{1}{6}\right)+\dfrac{1}{8}.15}{a+\dfrac{7}{6}}\)
\(A=\dfrac{\dfrac{3}{7}.\dfrac{7}{24}+\dfrac{1}{8}.15}{a+\dfrac{7}{6}}\)
\(A=\dfrac{\dfrac{1}{8}+\dfrac{1}{8}.15}{a+\dfrac{7}{6}}\)
\(A=\dfrac{\dfrac{1}{8}.\left(15+1\right)}{a+\dfrac{7}{6}}\)
\(A=\dfrac{2}{a+\dfrac{7}{6}}\)
b, Thay \(a=75\%\) vào \(A\), ta được:
\(A=\dfrac{2}{75\%+\dfrac{7}{6}}\)
\(A=\dfrac{2}{\dfrac{3}{4}+\dfrac{7}{6}}\)
\(\Rightarrow A=\dfrac{23}{12}\)
c, Ta có: \(\dfrac{2}{a+\dfrac{7}{6}}=50\%\)
\(\dfrac{2}{a+\dfrac{7}{6}}=\dfrac{1}{2}\)
\(\dfrac{2}{a+\dfrac{7}{6}}=\dfrac{2}{4}\)
\(\Rightarrow a+\dfrac{7}{6}=4\)
\(\Rightarrow a=\dfrac{17}{6}\)
d, Để \(A\in Z\Rightarrow2⋮a+\dfrac{7}{6}\)
\(\Rightarrow a+\dfrac{7}{6}\in\left\{\pm1;\pm2\right\}\)
\(\circledast,a+\dfrac{7}{6}=1\Rightarrow a=\dfrac{-1}{6}\)
\(\circledast,a+\dfrac{7}{6}=-1\Rightarrow a=\dfrac{-13}{6}\)
\(\circledast,a+\dfrac{7}{6}=2+\Rightarrow a=\dfrac{5}{6}\)
\(\circledast,a+\dfrac{7}{6}=-2\Rightarrow a=\dfrac{-19}{6}\)
\(a\in\varnothing\) khi \(A\in Z\)
e, Ta có:
\(B=\dfrac{5}{3}+\dfrac{-1}{8}\Rightarrow B=\dfrac{37}{24}\)
\(\Rightarrow\dfrac{2}{a+\dfrac{7}{6}}=\dfrac{37}{24}\)
\(a+\dfrac{7}{6}=\dfrac{37}{24}.2\)
\(a+\dfrac{7}{6}=\dfrac{37}{12}\)
\(\Rightarrow a=\dfrac{23}{12}\)
Chúc bạn học thiệt giỏi nha!!!
A= \(\dfrac{-3}{5}-\dfrac{-4}{5}+\dfrac{-9}{10}\)
A = \(\dfrac{-7}{10}\)
Đặt \(\dfrac{a}{b^2}=\dfrac{b^2}{c^3}=\dfrac{c^3}{a^4}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=k.b^2\\b^2=k.c^3\\c^3=k.a^4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=k.k.c^3=k^2c^3\\c^3=k.a^4\end{matrix}\right.\)
\(\Rightarrow a=k^2.k.a^4\)
\(\Rightarrow a=k^3a^4\)
\(\Rightarrow\left(ka\right)^3=1\)
\(\Rightarrow ka=1\)
\(\Rightarrow a=\dfrac{1}{k}\) (1)
Thế vào \(c^3=k.a^4\Rightarrow c^3=k.\dfrac{1}{k^4}=\dfrac{1}{k^3}\)
\(\Rightarrow c=\dfrac{1}{k}\) (2)
Thế vào \(b^2=kc^3\Rightarrow b^2=k.\dfrac{1}{k^3}=\dfrac{1}{k^2}\)
\(\Rightarrow b=\dfrac{1}{k}\) hoặc \(b=-\dfrac{1}{k}\) (3)
(1);(2);(3) \(\Rightarrow\left[{}\begin{matrix}a=b=c\\a=c=-b\end{matrix}\right.\)
TH1: \(a=b=c\)
\(\Rightarrow P=\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)\left(1+\dfrac{a}{a}\right)=2.2.2=8\)
Th2: \(a=c=-b\)
\(\Rightarrow P=\left(1+\dfrac{-b}{b}\right)\left(1+\dfrac{b}{-b}\right)\left(1+\dfrac{-b}{-b}\right)=0.0.2=0\)