K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2018

nối M với h, ta có: 
MH = AC/2 = MC ( trung tuyến = 1/2 cạnh huyền của tam giác vuông AHC) 
=> MHC^ = MCH^ = 2.KCH^ ( vì CK là phân giác của ACB^) 
gt: KB = KC => KCH^ = KBH^ 
=> MHC^ = 2.KBH^ = KBH^ + KBH^ (1) 
mắt khác: 
MHC^ = KBH^ + KMH^ (2) ( góc ngoài và trong của tam giác BMH) 
(1) và (2) => KBH^ = KMH^ => BHM cân tại H => HB = HM (1) 
tổng góc trong của tam giác BMH là: 
KBH^ + BHA^ + AHM^ + KMH^ = 180* 
=> 2.KBH^ + 90* + AHM^ = 180* 
=> 2.KBH^ + AHM^ = 90* (2) 
tam giác AHC vuông => MAH^ + MCH^ = 90* 
=> MAH^ + 2.KCH^ = 90* 
=> MAH^ + 2.KBH^ = 90* (3) ( vì KCH^ = KBH^) 
(2) và (3) => AHM^ = MAH^ => HA = HM 
mặt khác: HM = AC/2 = AM 
=> HA = HM = AM => AHM là tam giác đều => HA = HM (4) 
(1) và (4) => HA = HB 
=> AHM là tam giác đều => MAH^ = 60* => ACB^ = 30* 
=> ABC^ = 180* - BAC^ - ACB^ = 180* - 105* - 30* = 45* 
(hoặc ABC^ = ABH^ = 45* => ACB^ = 30*)

27 tháng 1 2018
jgfjjy

Bài làm

a) Xét ∆ABC vuông tại B có:

^BAC + ^C = 90°

Hay ^BAC + 30° = 90°

=> ^BAC = 60° 

Vì AD là phân giác của góc BAC.

=> ^DAC = 60°/2 = 30°

Xét tam giác ADC có:

^DAC + ^ACD + ^ADC = 180°

Hay 30° + 30° + ^ADC = 180°

=> ^ADC = 180° - 30° - 30°

=> ^ADC = 120°

b) Xét tam giác ABD và tam giác AED có:

AB = AE ( gt )

^BAD = ^EAD ( Do AD phân giác )

Cạnh AD chung.

=> ∆ABD = ∆AED ( c.g.c )

c) Vì ∆ABD = ∆AED ( cmt )

=> ^ABD = ^AED = 90°

=> DE vuông góc với AC tại E                (1)

Ta có: ^DAC = ^DCA = 30°

=> ∆DAC cân tại D.

=> AD = DC

Xét tam giác DEA và tam giác DEC có:

Góc vuông: ^DEA = ^DEC ( = 90° )

Cạnh huyền AD = DC ( cmt )

Góc nhọn: ^DAC = ^DCA ( cmt )

=> ∆DEA = ∆DEC ( g.c.g )

=> AE = EC 

=> E là trung điểm của AC.                       (2)

Từ (1) và (2) => DE là trung trực của AC ( đpcm )

23 tháng 2 2017

A B C M N I 60 o

Tam giác ABC có: góc BAC+góc ABC+góc ACB=180o=>60o+góc ABC+góc ACB=180o

=> góc ABC+góc ACB=120o

góc ABM=góc MBC=1/2 góc ABC (vì BM là tia phân giác góc ABC)

góc ACN=góc NCB=1/2 góc ACB (vì CN là tia phân giác góc ACB)

=>góc ABM+góc ACN=góc MBC+góc NCB=1/2 góc ABC+1/2 góc ACB=1/2(góc ABC+góc ACB)=(1/2).120o=60o

góc BIC+góc IBC+góc ICB=180o=>góc BIC+60o=180o=>góc BIC=120o

góc BIN kề bù với góc BIC => góc BIN+góc BIC=180o=>góc BIN+120o=180o=>góc BIN=60o