K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2017

bài này làm được nhưng nhại đánh máy ra.... lên mạng mà search bạn ạ

12 tháng 5 2017

mình lên rồi nhưng ko có

25 tháng 12 2021

a, xet tam giac ABD va tam giac ACD co : AD chung

AB = AC do tam giac ABC can tai A (gt)

goc BAD = goc CAD do AD la phan giac cua goc A (gt)

=> tam giac ABD = tam giac ACD (c - g - c)

=> BD = CD (dn)

xet tam giac BED va tam giac CFD co : goc BED = goc CFD = 90 do ...

goc B = goc C do tam giac ABC can tai  A(gt)

=> tam giac BED = tam giac CFD (ch - gn)

=> DE = DF (dn)

b, cm o cau a

c, tam giac ABD = tam giac ACD (cau a)

=> goc ADC = goc ADB (dn)

goc ADC + goc ADB = 180 (kb)

=> goc ADC = 90

co DB = DC (cau a)

=> AD la trung truc cua BC (dn)

bài 1: Cho tam giác ABC vuông tại A, có   \( \widehat{B}\)=600 và AB= 5 cm. Tia phân giác của góc B cát AC tại D. Kẻ DE vuông góc với BC tại E.           a) Chứng minh:\(\Delta ABD=\Delta EBD\)           b) Chứng minh:\(\Delta ABE\) là tam giác đều           c) Tính độ dài cạnh BC ( câu này chưa làm đc)Bài 2: Cho\(\Delta ABC\) cân tại A có AB= 5cm, BC=6cm. Kẻ AD vuông góc với BC ( d € BC)           a) Tìm...
Đọc tiếp

bài 1: Cho tam giác ABC vuông tại A, có   \( \widehat{B}\)=600 và AB= 5 cm. Tia phân giác của góc B cát AC tại D. Kẻ DE vuông góc với BC tại E.

           a) Chứng minh:\(\Delta ABD=\Delta EBD\)

           b) Chứng minh:\(\Delta ABE\) là tam giác đều

           c) Tính độ dài cạnh BC ( câu này chưa làm đc)

Bài 2: Cho\(\Delta ABC\) cân tại A có AB= 5cm, BC=6cm. Kẻ AD vuông góc với BC ( d € BC)

           a) Tìm các tam giác bằng nhau trong hình

           b) Tính độ dài AD ( câu này chưa làm đc)

Bài 3:  a) Cho \(\Delta MNP\) vuông tại N biết MN= 20cm; MP=25cm. Tính độ dài cạnh NP

           b) Cho \(\Delta DEF\) có DE=10cm; DF=24cm; EF=26cm. Chứng Minh \(\Delta DEF\) vuông

Bài 4: Cho tam giác ABC có \( \widehat{A}\)=900; AB<AC; phân giác BE, E € AC

         Lấy điểm H thuộc cạnh BC sao cho BH=BA

           a) Chứng minh EH ┴ BC

           b) Chứng minh BE là đươngf trung trực của AH

           c) Đường thẳng EH cắt đường thẳng AB ở K. Chứng minh EK = EC

           d) Chứng minh AH // KC

           e) Gọi M là trung điểm của KC. Chứng minh ba điểm B,E,M thẳng hàng

 

2

Sao nhiều vậy bạn???

13 tháng 2 2016

moi hok lop 6

12 tháng 8 2017

a) Ta có AB^2 + AC^2=6^2 + 8^2= 36 + 64= 100=BC^2

=> ΔABC vuông tại A (định lý Py- ta-go đảo)

b) Xét ΔAHD và ΔAED có:

AD là cạnh chung

^AHD=^AED (=90°)

^HAD=^EAD (AD là tia phân giác)

Vậy ΔAHD = ΔAED

=> AH=AE

     DH=DE

Nên AD là đường trung trực của HE

c) ΔDEC vuông tại E có DC là cạnh huyền nên DC là cạnh lớn nhất.

Do đó DE<DC

Mà DH=DE (cmt)

Nên DH<DC

26 tháng 4 2018

a) Xét tam giác ABC có:
6^2 +8^2 =10^2
<=> AB^2 +AC^2 =BC^2
Áp dụng định lí Py-ta-go
=> tam giác ABC vuông tại A
=> đpcm
b)
+) xét tam giác AHD và tam giác AED có:
góc H = góc E =90 độ
cạnh AD chung
góc HAD = góc DAE ( gt)
=> tam giác AHD = tam giác AED (cạnh huyền -góc nhọn)
=> AH =AE ( 2 cạnh tương ứng)
=> Tam giác AHE cân tại A (1)
Gọi giao điểm của HE và AD là O
=> HO = OE
=> AO là đường trung tuyến của HE(2)
Từ 1 và 2
=> OA là đường trung trực của HE
Hay Ad là đường trung trực của HE
=> đpcm

A B C D E F I 1 2

*Bài dài quá, mk tóm tắt cách làm rồi bạn diễn giải ra nha*

a) Để chứng minh \(\Delta ADB=\Delta ADC\), ta chứng minh theo trường hợp cạnh - góc - cạnh

- Ta thấy có AD là cạnh chung

- \(\widehat{A_1}=\widehat{A_2}\) do phân giác

- AB = AC do \(\Delta ABC\) cân

b) Để chứng minh \(\Delta AED=\Delta AFD\), ta chứng minh theo trường hợp cạnh huyền - góc nhọn của tam giác vuông

- Dễ dàng chứng minh 2 tam giác này vuông lần lượt tại E, F

- AD là cạnh chung

- \(\widehat{A_1}=\widehat{A_2}\)

c) Để chứng minh \(\Delta BDE=\Delta CDF\), ta chứng minh theo trường hợp cạnh huyền - góc nhọn của tam giác vuông

- Dễ thấy ED = DF do \(\Delta AED=\Delta AFD\)

- BD = DC

(do AD là phân giác của \(\Delta ABC\)\(\Delta ABC\) cân tại A nên AD cũng là trung tuyến. Suy ra D là trung điểm CD nên BD=DC)

d) Để chứng minh AD là trung trực BC, ta phải chứng minh D là trung điểm BC và AD vuông góc BC

- Đã có D là trung điểm BC do cmt

- AD vuông góc BC do AD là phân giác của \(\Delta ABC\)\(\Delta ABC\) cân tại A nên AD cũng là đường cao.

e) Để chứng minh \(I\in AD\) mà I là trung trực EF thì ta chứng minh AD là trung trực EF

Để chứng minh AD là trung trực EF, ta phải có AE = AF, ED = DF (cmt do \(\Delta AED=\Delta AFD\))

9 tháng 2 2018

Giúp mình nha ....đang cần gấp lắm luôn á!!!!