Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nha.
a) Xét tam giác ABH và tam giác ACH
Ta có: Góc AHB = Góc AHC ( = 90 độ )
AB = AC ( Vì tam giác ABC cân )
Góc ABH = Góc ACH ( Vì tam giác ABC cân )
=> Tam giác ABH = Tam giác ACH ( ch-gn )
=> HB = HC ( hai cạnh tương ứng )
Góc BAH = Góc CAH ( Hai góc tương ứng 0
=> Đpcm
b) Vì HB = HC ( câu a )
Mà BC = HB + HC
=> HB = HC = BC / 2 = 8 / 2 = 4 cm
Xét tam giác ABH vuông tại H
=> AH2 + BH2 = AB2
Hay AH2 + 42 = 52
=> AH2 = 52 - 42
=> AH2 = 9
=> AH = 3
c) Xét tam giác AHD và tam giác AHE
Ta có: Góc ADH = Góc AEH ( = 90 độ )
AH là cạnh huyển chung
Góc BAH = Góc CAH ( câu a )
=> Tam giác AHD = Tam giác AHE ( ch-gn )
=> HD = HE ( Hai cạnh tương ứng )
=> Tam giác HDE cân tại H
=> Đpcm
=> \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng).
c) Vì \(\widehat{BAH}=\widehat{CAH}\left(cmt\right)\)
=> \(\widehat{DAH}=\widehat{EAH}.\)
=> \(\Delta HDE\) cân tại \(H\left(đpcm\right).\)
Chúc bạn học tốt!
a, ta có tam giác Abc có AH vuông góc với BC ,AB = 5cm ,AC = 5cm suy ra HB= HC , BAC=CAH b, có HB+HC=BC suy ra BC : 2 = 4 hay 8:4 =2 nên HB=HC=4cm Xét tam giác AHB vuông tại H có AB^2 = AH^2 + HB^2 suy ra AH^2 =AB^2 -HB^2 hay : AH^2 =5^2 -4^2 AH^2 = 25-16 AH^2 = 9 suy ra AH = 9 cm c,xét tam giacsHDE có HD vuông góc với AB HE vuông góc với AC suy ra HDE là tam giác cân CHÚC BẠN HỌC TỐT
Bài này mk làm rồi, bn vào trang của mk là thấy nhé, cần thì link luôn thể; https://hoc24.vn/hoi-dap/question/172618.html
Trả lời : Bn tham khảo link này :
https://h.vn/hoi-dap/question/559410.html
( Vào thống kê hỏi đáp của mk sẽ thấy )
A B C 5 5 8 H D E
Cm: Ta có: AB = AC <=> t/giác ABC là t/giác cân tại A
<=> góc B = góc C
Xét t/giác ABH và t/giác ACH
có góc BHA = góc CHA = 900 (gt)
AB = AC = 5 cm (gt)
góc B = góc C (cmt)
=> t/giác ABH = t/giác ACH (ch - gn)
=> BH = CH (hai cạnh tương ứng)
=> góc BAH = góc CAH (hai góc tương ứng)
b) Ta có: BH = CH = BC/2 = 8/2 = 4 (cm)
Xét t/giác ABH vuông tại H (áp dụng định lí Pi - ta- go)
=> AB2 = AH2 + BH2
=> AH2 = 52 - 42 = 9 = 32
=> AH = 3 (cm)
c) Xét t/giác ADH và t/giác AEH
có góc ADH = góc AEH = 900(gt)
AH : chung
góc DAH = góc EAH (cmt)
=> t/giác ADH = t/giác AEH (ch - gn)
=> HD = HE (hai cạnh tương ứng)
=> t/giác HDE là t/giác cân tại H
A B C H
Cm: Xét t/giác ABH và t/giác ACH
có góc B = góc C (vì t/giác ABC cân tại A)
AB = AC (gt)
góc AHB = góc AHC = 900 (gt)
=> t/giác ABH = t/giác ACH (ch - gn)
=> HB = HC (hai cạnh tương ứng)
=> góc BAH = góc CAH (hai góc tương ứng)
b) Ta có: HB = HC = AB/2 = 8/2 = 4 (cm)
Áp dụng định lí Py - ta - go vào t/giác ABH vuông tại H, ta có:
AB2 = HB2 + AH2
=> AH2 = 52 - 42 = 25 - 16 = 9
=> AH = 3
Vậy AH = 3 cm
c) Xem lại đề
( hình bn tự vẽ )
Giải
Xét ΔAHB và ΔAHC có
AH là cạnh chung
góc AHB = góc AHC =90o ( AH⊥BC )
AB=AC ( ΔABC cân tại A )
=> ΔAHB = ΔAHC (ch_cgv)
=> HB=HC ( 2 cạnh tương ứng )
Vậy HB=HC
b) Ta có HB = HC ( theo câu a)
=> H là trung điểm BC => HB=HC = 1/2 BC
MÀ BC = 8cm( gt) => HB=HC = 1/2 . 8=4 ( cm )
Xét ΔAHB vuông tại H
=> AB2 = HA2+HB2 ( định lý Pi-ta-go)
THay số ta có
52=AH2 + 42
=> AH2 = 52-42
=> AH2=9
=> AH = √9=3 ( AH>0)
Vậy AH=3cm
c)Do AH là tia phân giác của góc BAC
MÀ HD⊥AB , HE⊥AC
=> HD=HE ( tính chất )
=> ΔHDE cân tại H
Vậy ΔHDE cân tại H
A B C H E D
a) tg AHB và tg AHC: AHB^ = AHC^ = 90o; AB = AC; AH chung
=> tg AHB = tg AHC (ch_cgv)
=> HB = HC (2 cạnh t/ứng) ; BAH^ = CAH^ (2 góc t/ứng)
b) BC= BH + HC = 2HC = 8 => HC = BC/2 = 4 (cm)
tg AHC: \(AH=\sqrt{AC^2-HC^2}=\sqrt{25-16}=3\left(cm\right)\)
c) tg ADH và tg AEH: ADH^ = AEH^ = 90o; AH chung; ADH^ = EAH^
=> tg ADH = tg AEH (ch_gn)
=> AD =AE (2 cạnh t/ứng)
Vậy tg DAE cân tại A (AD = AE)
A B C H D E
a) Xét \(\Delta ABC\) có :
AB = AC (gt)
=> \(\Delta ABC\) cân tại A
\(\Delta ABH,\Delta ACH\) có :
\(\widehat{ABH}=\widehat{ACH}\) (\(\Delta ABC\) cân tại A)
\(AB=AC\left(gt\right)\)
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
=> \(\Delta ABH=\Delta ACH\) (cạnh huyền - góc nhọn)
=> \(\left\{{}\begin{matrix}HB=HC\left(\text{2 cạnh tương ứng}\right)\\\widehat{BAH}=\widehat{CAH}\left(\text{2 góc tương ứng}\right)\end{matrix}\right.\)
b) Ta có : \(H\in BC\left(gt\right)\Rightarrow HB=HB=\dfrac{1}{2}BC=\dfrac{1}{2}.8=4\left(cm\right)\)
Xét \(\Delta ABH\) vuông tại H (\(AH\perp BC\)) có :
\(AH^2=AB^2-BH^2\) (Định lí PITAGO)
=> \(AH^2=5^2-4^2=9\)
=> \(AH=\sqrt{9}=3\left(cm\right)\)
c) Xét \(\Delta DBH,\Delta ECH\) có :
\(\widehat{DBH}=\widehat{ECH}\) (\(\Delta ABC\) cân tại A)
\(BH=CH\)(cm câu a)
\(\widehat{BDH}=\widehat{CEH}\left(=90^o\right)\)
=> \(\Delta DBH=\Delta ECH\) (cạnh huyền -góc nhọn)
=> \(HD=HC\) (2 cạnh tương ứng)
=> \(\Delta HDE\) cân tại H.