Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(5A=3B=15C\Rightarrow\frac{5A}{15}=\frac{3B}{15}=\frac{15C}{15}\Rightarrow\frac{A}{3}=\frac{B}{5}=C\)
và \(A+B+C=180^0\)
Theo tính chất dãy tỉ số bằng nhau
\(\frac{A}{4}=\frac{B}{5}=C=\frac{A+B+C}{4+5+1}=\frac{180}{10}=18\Rightarrow A=72^0;B=90^0;C=18^0\)
b, Do AD là tia phân giác ^A => \(\widehat{BAD}=\frac{1}{2}\widehat{A}=\frac{72}{2}=36^0\)
Lại có : \(\widehat{BAD}+\widehat{ADB}+\widehat{ABD}=180^0\)( tổng số đo 3 góc trong tam giác )
\(\Rightarrow\widehat{ADB}=180^0-\widehat{BAD}-\widehat{ABD}=180^0-90^0-36^0=54^0\)
a) ∆ADB và ∆ ACD có:
\(\widehat{B}\) =\(\widehat{C}\)(gt) (1)
\(\widehat{A1}\)=\(\widehat{A2}\)(AD là tia phân giác)
Nên \(\widehat{D1}\)=\(\widehat{D2}\)
AD cạnh chung.
Do đó ∆ADB=∆ADC(g.c.g)
b) ∆ADB=∆ADC(câu a)
Suy ra AB=AC .
a Xét \(\Delta ADB\) và \(\Delta ADC\) có :
AD : cạnh chung
\(\widehat{BAD}=\widehat{CAD}\) (gt)
Ta có : \(\widehat{BDA}+\widehat{DAB}+\widehat{ABD}=\widehat{CDA}+\widehat{DAC}+\widehat{ACD}\)
\(\Rightarrow\widehat{BDA}=\widehat{CDA}\)
\(\Rightarrow\Delta ADB=\Delta ADC\) (g . c . g)
b Vì \(\Delta ADB=\Delta ADC\)
\(\Rightarrow\) AB = AC
5A =3B =15C => 5A/15=3B/15=15C/15=A/3=B/5=C/1 Ap dung tinh chat dãy tỉ số= nhau ta có A/3=B/5=C/1=A+B=C /3+5+1 = 180/9 =20 => .....A=60 ......B=100 .......C=20
THANKS
Hướng dẫn bạn làm nhé, bài này cũng đơn giản thôi :P
a/ \(\Delta ABD=\Delta ACD\left(c.g.c\right)\)
b/ \(\Delta AHD=\Delta AKD\left(canhhuyen...gocnhon\right)\)
\(\Rightarrow HD=KD\)
c/ tự làm
a) Góc A = 1
Góc B = 3
Góc C = 5
Học tốt!!!
ta có : tổng ba góc của 1 tam giác bằng 180 độ => góc A = 180 -( b+c) = 180 - 100 = 80
vì tia AD là tia phân giác của góc A nên : góc ADC = góc ADB = 1/2 góc A = 1/2. 80 =40