K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2017

Hướng dẫn bạn làm nhé, bài này cũng đơn giản thôi :P

a/ \(\Delta ABD=\Delta ACD\left(c.g.c\right)\)

b/ \(\Delta AHD=\Delta AKD\left(canhhuyen...gocnhon\right)\)

\(\Rightarrow HD=KD\)

c/ tự làm

10 tháng 1 2022

a: Ta có: \(\widehat{BMA}+\widehat{ABM}=90^0\)

\(\widehat{BMD}+\widehat{DBM}=90^0\)

mà \(\widehat{ABM}=\widehat{DBM}\)

nên \(\widehat{BMA}=\widehat{BMD}\)

c: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có 

BM chung

\(\widehat{ABM}=\widehat{DBM}\)

Do đó: ΔBAM=ΔBDM

Suy ra: MA=MD

Xét ΔAME vuông tại A và ΔDMC vuông tại D có 

MA=MD

\(\widehat{AME}=\widehat{DMC}\)

Do đó: ΔAME=ΔDMC

4 tháng 12 2016

Mình làm câu A thôi nha:

Xét tam giác ADB và tam giác ADC

Ta có:AB=AC (gt)

góc A1=A2 (gt)

AD là cạnh chung

=>tam giác ADB=tam giác ADC (cạnh-góc-cạnh)

hehehehehehe

18 tháng 12 2016

 

Xét AHD và AKD lần lượt vuông tại H,K có:

AD: cạnh chung

HAD = KAD ( vì AD là tia phân giác góc A)

Suy ra AHD=AKD(ch-gn)

Do đó AH=AK ( 2 cạnh tương ứng)

13 tháng 12 2015

a) \(\Delta ADB=\Delta ADC\left(c.g.c\right)\)

b) \(\Delta ADH=\Delta ADK\left(\text{cạnh huyền - góc nhọn}\right)\)

\(\Rightarrow DH=DK\)

c) A = 4B => A1 = 1/2A = 2B

Xét \(\Delta ABD\) vuông ở D có B + A1 = 900 hay 3B = 900 => B = 300

Do đó A = 4 . 300 = 1200

Xét \(\Delta ABC\) có C = 1800 - A - B = 300

13 tháng 12 2015

giải giùm đi mọi người

cho 2 lik e

27 tháng 12 2017

A B C D H K 1 2

a) Xét \(\Delta ADB\)và \(\Delta ADC\)có :

AD ( cạnh chung )

\(\widehat{A_1}=\widehat{A_2}\)( vì AD là tia phân giác )

AB = AC ( gt )

suy ra \(\Delta ADB\)\(\Delta ADC\)( c.g.c )

b) \(\Rightarrow\widehat{ADB}=\widehat{ADC}\)( 2 góc tương ứng )                         ( theo câu a )

Mà \(\widehat{ADB}+\widehat{ADC}=180^o\)

\(\Rightarrow\widehat{ADB}=\widehat{ADC}=\frac{180^o}{2}=90^o\)

\(\Rightarrow AD\perp BC\)

c) vì \(\Delta ADB\)\(\Delta ADC\)( theo câu a )

\(\Rightarrow BD=CD\)( 2 cạnh tương ứng )

\(\Rightarrow\widehat{ABD}=\widehat{ACD}\)( 2 góc tương ứng )

Mà \(\widehat{ABD}+\widehat{BDH}=90^o\)\(\widehat{ACD}+\widehat{CDK}=90^o\)

\(\Rightarrow\widehat{BDH}=\widehat{CDK}\)

Xét \(\Delta HBD\)và \(\Delta KCD\)có :

\(\widehat{BDH}=\widehat{CDK}\)( cmt )

BD = CD ( cmt )

\(\widehat{ABD}=\widehat{ACD}\)( cmt )

suy ra \(\Delta HBD\)\(\Delta KCD\)( g.c.g )

\(\Rightarrow DH=DK\)( 2 cạnh tương ứng )