Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
A B C D H E d
Vì BD là phân giác của ABC nên \(ABD=CBD=\frac{ABC}{2}\)
Vì ABC vuông góc tại A nên góc A = 90o
Xét Δ ABC có: ABC + ACB = 90o (tính chất của Δ vuông)
=> ABC = 90o - ACB
=> \(\frac{ABC}{2}=\frac{90^o-ACB}{2}\)
=> CBD = 45o - \(\frac{ACB}{2}\)
Vì \(CH\perp DE\) nên CHD = 90o
Xét Δ BHC có: HBC + BCH = 90o (tính chất của Δ vuông)
=> 45o - \(\frac{ACB}{2}\) + BCH = 90o
=> BCH - \(\frac{ACB}{2}\) = 45o
=> BCH - \(\frac{ACB}{2}\) = \(\frac{BCE}{2}\) (vì BCE = 90o)
=> BCH \(=\frac{BCE+ACB}{2}=\frac{2.ACB+DCE}{2}=ACB+\frac{DCE}{2}\)
=> BCH - ACB = \(\frac{DCE}{2}\)
=> \(DCH=\frac{DCE}{2}\)
=> CH là tia phân giác của góc DCE (đpcm)
bn ơi, bn k trả lời sớm, thầy mik chữa bài và mik nộp bài mất tiêu r
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a/
Do \(\Delta ABC\) cân\(\widehat{ABC}=\widehat{ACB}\)
\(\widehat{DBC}+\widehat{ABC}=\widehat{DCB}+\widehat{ACB}=90^o\Rightarrow\widehat{DBC}=\widehat{DCB}\Rightarrow\Delta BDC\) cân tại D
b/
Ta có \(\Delta BDC\) cân nên\(BD=CD\)
\(\Delta ABC\) cân nên \(AB=AC\)
\(\Rightarrow\Delta ABD=\Delta ACD\) (Hai tg vuông có các cạnh góc vuông tương ứng bằng nhau)
\(\Rightarrow\widehat{BAD}=\widehat{CAD};\widehat{BDA}=\widehat{CDA}\) => AD là phân giác của \(\widehat{A}\) và \(\widehat{D}\)
c/
Do tg ABC cân tại A và AD là phân giác \(\widehat{A}\) nên AD là đường cao đồng thời là đường trung tuyến thuộc cạnh BC của tg ABC (Trong tg cân đường phân giác đồng thời là đường cao, đường trung tuyến và đường trung trực)
\(\Rightarrow AD\perp BC\) và đi qua trung điểm của BC