K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2018

A B C D E a b c

a) Kẻ  \(CE\perp AB\)

Ta có :  \(S_{\Delta ABC}=\frac{1}{2}CE.AB\left(1\right)\)

Xét  \(\Delta ACE\)có  \(\sin A=\frac{EC}{AC}\)

\(\Rightarrow\frac{1}{2}AB.AC.\sin A=\frac{1}{2}AB.AC.\frac{EC}{AC}=\frac{1}{2}AB.EC\left(2\right)\)

Từ (1) và (2)  \(\Rightarrow S_{\Delta ABC}=\frac{1}{2}AB.AC.\sin A\left(đpcm\right)\)

b) Kẻ  \(BD\perp AC\)

Xét  \(\Delta ADB\)có  \(\sin A=\frac{BD}{AB}\)

\(\Rightarrow\frac{a}{\sin A}=BC\div\frac{BD}{AB}=\frac{BC.AB}{BD}\left(3\right)\)

Lại có :  \(\sin A=\frac{EC}{AC}\)( câu a )

\(\Rightarrow\frac{a}{\sin A}=BC\div\frac{EC}{AC}=\frac{CA.BC}{EC}\left(4\right)\)

Xét  \(\Delta BEC\)có  \(\sin B=\frac{EC}{BC}\)

\(\Rightarrow\frac{b}{\sin B}=CA\div\frac{EC}{BC}=\frac{CA.BC}{EC}\left(5\right)\)

Xét  \(\Delta BDC\)có  \(\sin C=\frac{DB}{BC}\)

\(\Rightarrow\frac{c}{\sin C}=AB\div\frac{DB}{BC}=\frac{AB.BC}{DB}\left(6\right)\)

Từ (3) ; (4) ; (5) và (6)  \(\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\left(đpcm\right)\)

c) Xét  \(\Delta ABD\)có  \(\cos A=\frac{AD}{AB}\)

Áp dụng định lí Py-ta-go cho  \(\Delta ABD\)vuông tại D ta được :

\(AB^2=BD^2+AD^2\)

Áp dụng định lí Py-ta-go cho  \(\Delta BDC\)vuông tại D ta được :

\(BD^2+DC^2=BC^2\)

Ta có :  \(b^2+c^2-2bc.\cos A\)

\(=AB^2+AC^2-2AB.AC.\cos A\)

\(=BD^2+AD^2+AC^2-2AB.AC.\frac{AD}{AB}\)

\(=BD^2+\left(AC^2-2AD.AC+AD^2\right)\)

\(=BD^2+\left(AC-AD\right)^2\)

\(=BD^2+DC^2\)

\(=BC^2=a\left(đpcm\right)\)

1 tháng 8 2019

Kẻ đg cao BH

a) + \(sinA=\frac{BH}{AB}=\frac{BH}{c}\)

+ \(S_{ABC}=\frac{1}{2}BH\cdot AC=\frac{BH\cdot AC\cdot AB}{2AB}\)

\(=\frac{bc\cdot sinA}{2}\)

b) + \(sinC=\frac{BH}{BC}=\frac{BH}{a}\)

\(\Rightarrow\frac{sinA}{sinC}=\frac{\frac{BH}{c}}{\frac{BH}{a}}=\frac{a}{c}\Rightarrow\frac{a}{sinA}=\frac{c}{sinC}\)

+ Tương tự : \(\frac{a}{b}=\frac{sinA}{sinB}\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}\)

Do đó: \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)

11 tháng 10 2019

A B C D M N c b a

Kẻ BM và CN vuông góc với AD

a)  AC.sin\(\frac{A}{2}\)=CN \(\le\) CD ; AB.sin\(\frac{A}{2}\)=BM \(\le\) BD 

=> (AC+AB)sin\(\frac{A}{2}\)\(\le\) CD+BD = BC hay (b+c)sin\(\frac{A}{2}\)\(\le\)a <=> sin\(\frac{A}{2}\le\frac{a}{b+c}\)

dấu '=' xảy ra khi M,N, D trùng nhau hay tam giác ABC cân ở A

b) làm tương tự ta có sin\(\frac{B}{2}\le\frac{b}{a+c}\); sin\(\frac{C}{2}\le\frac{c}{a+b}\)

=> sin\(\frac{A}{2}.sin\frac{B}{2}.sin\frac{C}{2}\le\frac{a.b.c}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)  (1)

mà (a+b)(b+c)(c+a) \(\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}\)=8a.b.c => (1) \(\le\frac{1}{8}\)

dấu '=' khi a=b=c hay tam giác ABC là tam giác đều

c) xét 2 tam giác CND và tam giác BMD có CN // BM ( đều vuông góc với AD) nên \(\widehat{NCD}=\widehat{MBD}\); lại có \(\widehat{NDC}=\widehat{BDM}\)

=> là 2 tam giác đồng dạng => \(\frac{DN}{DM}=\frac{NC}{MB}=\frac{AC.sin\frac{A}{2}}{AB.sin\frac{A}{2}}=\frac{b}{c}=>DN=DM.\frac{b}{c}\)

AD = AM+MD => \(\frac{b}{c}AD=\frac{b}{c}AM+\frac{b}{c}MD\)

AD= AN-ND

=>cộng vế theo vế ta được  AD(\(\frac{b}{c}+1\)) = \(\frac{b}{c}\)AM+\(\frac{b}{c}MD\)+ AN - ND =  \(\frac{b}{c}AM+AN\)\(\frac{b}{c}ABcos\frac{A}{2}+ACcos\frac{A}{2}\)=\(\frac{b}{c}.c.cos\frac{A}{2}+bcos\frac{A}{2}\)= 2b.\(cos\frac{A}{2}\)

=> AD(\(\frac{b+c}{c}\)) = 2b\(cos\frac{A}{2}\) <=> AD= \(\frac{2bc.cos\frac{A}{2}}{b+c}\)

NM
14 tháng 8 2021

C A B H

Gọi AH là đường cao của tam giác ABC như hình vẽ

ta có : \(AH=AC\times sinC=b.sinC\)

mà \(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}AC.BC.sinC=\frac{1}{2}ab.sinC\)

.b hoàn toàn tương tự ta có thể chứng minh :

\(S_{ABC}=\frac{1}{2}ab.sinC=\frac{1}{2}bc.sinA=\frac{1}{2}ac.sinB\)

hay \(abc.\frac{sinC}{c}=abc.\frac{sinA}{a}=abc.\frac{sinB}{b}\)

hay ta có : \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)

17 tháng 8 2020

Xem định lý sin

thế hồn bay mất lun ha !!!