Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C 110*
=> \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\widehat{A}+\widehat{B}=180^o-110^o\)
\(\widehat{A}+\widehat{B}=70^o\)
=> \(\widehat{A}\) = 70o:(3+4).3 = 30o
=> \(\widehat{B}\) = 70o - 30o = 40o
Vậy  = 30o ; \(\widehat{B}\) = 40o và \(\widehat{C}\) = 110o
Tính số đo góc A của tam giác ABC biết \(\widehat{A}-\widehat{B}=22^o;\widehat{B}-\widehat{C}=22^o\)
Xét tam giác ABC có:góc A+góc B+góc C=180 độ(tổng 3 góc trong tam giác)
\(\Rightarrow\)góc A+góc B=180 độ-góc C
\(\Rightarrow\)góc B+góc C=180 độ-góc A
Mà góc A-góc B=22 độ
\(\Rightarrow\)góc A=\(\frac{\text{180 độ-góc C+22 độ}}{2}\)
\(\Rightarrow\)góc B=\(\frac{\text{180 độ-góc C+22 độ}}{2}-22độ\left(1\right)\)
Mà góc B-góc C=22 độ
\(\Rightarrow\)góc B=\(\frac{\text{180 độ-góc A+22 độ}}{2}\left(2\right)\)
Từ (1) và (2)\(\Rightarrow\)\(\frac{\text{180 độ-góc C+22 độ}}{2}-22độ=\frac{\text{180 độ-góc A+22 độ}}{2}\)
\(\Rightarrow\)\(\frac{\text{180 độ-góc C+22 độ-44độ}}{2}=\frac{\text{180 độ-góc A+22 độ}}{2}\)
\(\Rightarrow\)góc C-22 độ=góc A+22 độ
\(\Rightarrow\)góc A=góc C+44 độ
\(\Rightarrow\)góc B=góc C+22 độ
Xét tam giác ABC có:góc A+góc B+góc C=180 độ(tổng 3 góc trong tam giác)
Hay góc C+44 độ+góc C+22 độ+góc C=180 độ
3.góc C+66 độ=180 độ
góc C=\(\frac{180độ-66độ}{3}\)
góc C=38 độ
\(\Rightarrow\)góc A=38 độ +44 độ
góc A=82 độ
Câu 1
a.
Xét \(\Delta ABC\) có :
\(\widehat{ABC}+\widehat{BAC}+\widehat{BCA}=180^o\) ( định lý tổng 3 góc của 1 \(\Delta\) )
\(\Rightarrow\widehat{BCA}=40^o\) (1)
Ta có Ax là tia đối của AB
suy ra \(\widehat{BAC}+\widehat{CAx}=180^o\)
\(\widehat{CAx}=80^o\)
lại có Ay là tia phân giác \(\widehat{CAx}\)
\(\Rightarrow\widehat{xAy}=\widehat{yAc}=\dfrac{\widehat{CAx}}{2}=\dfrac{80^o}{2}=40^o\) (2)
Từ (1)(2) suy ra \(\widehat{yAc}=\widehat{ACB}=40^o\)
mà chúng ở vị trí so le trong
\(\Rightarrow\) Ay//BC
Bài 2
Rảnh làm sau , đến giờ học rồi .
\(\widehat{A}=100^0\)
\(\Rightarrow\widehat{B}+\widehat{C}=180^0-100^0=80^0\)
Mà \(\widehat{B}-\widehat{C}=20^0\)
\(\Rightarrow\widehat{B}=\left(180^0+20^0\right):2=100^0\); \(\widehat{C}=\left(180^0-20^0\right):2=80^0\)
Áp dụng định lý tổng ba góc của 1 tam giác bằng 180\(^o\), ta có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(100^0+\widehat{B}+\widehat{C}=180^0\)
\(\widehat{B}+\widehat{C}=180^0-100^0\)
\(\widehat{B}+\widehat{C}=80^0\)
Mà \(\widehat{B}-\widehat{C}=20^0\left(gt\right)\)
\(\Rightarrow\widehat{B}=\left(80^0+20^0\right)\div2=50^0\)
\(\widehat{C}=50^0-20^0=30^0\)
Vậy \(\widehat{B}=50^0;\widehat{C}=30^0\)
a)
A B C 100*
=> Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}\) = 180o
100o + \(\widehat{B}+\widehat{C}\) = 180o
\(\widehat{B}+\widehat{C}\) = 180o - 100o
\(\widehat{B}+\widehat{C}\) = 80o
Góc B = (80o+50o):2 = 65o
=> \(\widehat{C}\) = 65o - 50o = 15o
Vậy \(\widehat{B}\) = 65o ; \(\widehat{C}\) = 15o
b)
80* A B C
Ta có : \(\widehat{3A}+\widehat{B}+\widehat{2C}\) = 180o
\(\widehat{3A}+\widehat{2C}\) = 180o - 80o
\(\widehat{3A}+\widehat{2C}\) = 100o
=> \(\widehat{A}\) = 100o:(3+2).3 = 60o
\(\widehat{C}\) = 100o - 60o = 40o
Vậy \(\widehat{A}\) = 60o ; \(\widehat{C}\) = 40o
Ta có \(\hept{\begin{cases}\widehat{A}-\widehat{B}=22^0\\\widehat{B}-\widehat{C=22^0}\end{cases}}\) (*)
\(\Rightarrow\widehat{A}-\widehat{B}=\widehat{B}-\widehat{C}\)
\(\Leftrightarrow\widehat{A}+\widehat{C}=2\widehat{B}\) (1)
Và \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (Vì 3 góc của tam giác)
\(\Rightarrow\widehat{A}+\widehat{C}=180^0-\widehat{B}\)(2)
Từ (1) và (2)
\(\Rightarrow2\widehat{B}=180^0-\widehat{B}\)
\(\Leftrightarrow3\widehat{B}=180^0\)
\(\Rightarrow\widehat{B}=\frac{180^0}{3}=60^0\)
Từ (*)
\(\Rightarrow\widehat{A}-\widehat{B}+\widehat{B}-\widehat{C}=22^0-22^0=0^0\)(3)
Từ (1) ;(3) và góc B = 60 độ
\(\hept{\begin{cases}\widehat{A}+\widehat{C}=2\cdot60^0=120^0\\\widehat{A}-\widehat{C}=0^0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\widehat{A}=60^0\\\widehat{C}=60^0\end{cases}}\)
Vậy, \(\widehat{A}=\widehat{B}=\widehat{C}=60^0\)