Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2)+)Xét a,b khác dấu\(\Rightarrow bđt\)đúng
+)Xét a,b cùng dấu
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}+4\ge3\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\)
\(\Leftrightarrow\dfrac{a^2}{b^2}+2\cdot\dfrac{a}{b}\cdot\dfrac{b}{a}+\dfrac{b^2}{a^2}+2\ge3\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\)
\(\Leftrightarrow\left(\dfrac{a}{b}+\dfrac{b}{a}\right)^2+2\ge3\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\)
\(\Leftrightarrow\left(\dfrac{a}{b}+\dfrac{b}{a}\right)^2-3\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+2\ge0\)
\(\Leftrightarrow\left(\dfrac{a}{b}+\dfrac{b}{a}\right)^2-\left(\dfrac{a}{b}+\dfrac{b}{a}\right)-2\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+2\ge0\)
\(\Leftrightarrow\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\left(\dfrac{a}{b}+\dfrac{b}{a}-1\right)-2\left(\dfrac{a}{b}+\dfrac{b}{a}-1\right)\ge0\)
\(\Leftrightarrow\left(\dfrac{a}{b}+\dfrac{b}{a}-1\right)\left(\dfrac{a}{b}+\dfrac{b}{a}-2\right)\ge0\)(luôn đúng vì \(\dfrac{a}{b};\dfrac{b}{a}>0\))
Bài 2:
\(\cos60^0=\dfrac{28^2+35^2-BC^2}{2\cdot28\cdot35}\)
\(\Leftrightarrow2009-BC^2=980\)
hay \(BC=7\sqrt{21}\left(cm\right)\)
Lời giải:
Kẻ đường cao $BH$ ($H\in AC$)
Áp dụng định lý Pitago ta có:
$BC^2=BH^2+CH^2=(AB^2-AH^2)+(AC-AH)^2$
$=AB^2-AH^2+AC^2+AH^2-2AC.AH$
$=AB^2+AC^2-2AC.AH(1)$
Vì $\widehat{A}=45^0$ nên tam giác $AHB$ vuông cân tại $H$
$\Rightarrow AH=BH$
$\Rightarrow AB=\sqrt{AH^2+BH^2}=\sqrt{AH^2+AH^2}=\sqrt{2}AH(2)$
Từ $(1);(2)\Rightarrow BC^2=AB^2+AC^2-2AC.\frac{AB}{\sqrt{2}}$
$=AB^2+AC^2-\sqrt{2}AB.AC$
Ta có đpcm.