Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề có: `ΔAMC` là Δ vuông, đường cao `MD`.
=> `AM^2=AD.AC` (1)
`ΔANB` là Δ vuông, đường cao `NE`:
=> `AN^2=AE.AB` (2)
Lại có: `ΔABD=ΔACE`(g.g)
=> \(\dfrac{AB}{AC}=\dfrac{AD}{AE}\Leftrightarrow AB.AE=AC.AD\left(3\right)\)
Từ (1), (2), (3) suy ra: `AM=AD` (đpcm)
$HaNa$
Tự vẽ hình nha bạn
Xét hai tam giác vuông : tam giác DAB và tam giác EAC có :
góc A là góc chung , góc EAC = góc ADB = 90 độ
=> tam giác DAB đồng dạng tam giác EAC
\(\Rightarrow\frac{AD}{AE}=\frac{AB}{AC}\Rightarrow AB\cdot AE=AD\cdot AC\)
Mặt khác, áp dụng hệ thức về cạnh trong tam giác vuông ABN có đường cao NE : \(AN^2=AE\cdot AB\)
Rồi áp dụng hệ thức đi nha
1.
Xét tam giác $ABD$ và $ACE$ có:
\(\left\{\begin{matrix} \widehat{A}-\text{chung}\\ \widehat{ADB}=\widehat{AEC}=90^0\end{matrix}\right.\Rightarrow \triangle ABD\sim \triangle ACE(g.g)\)
\(\Rightarrow \frac{AB}{AC}=\frac{AD}{AE}\Rightarrow AE.AB=AC.AD(1)\)
Xét tam giác $ADM$ và $AMC$ có:
\(\left\{\begin{matrix} \text{A}-\text{chung}\\ \widehat{ADM}=\widehat{AMC}(=90^0)\end{matrix}\right.\Rightarrow \triangle ADM\sim \triangle AMC(g.g)\)
\(\Rightarrow \frac{AD}{AM}=\frac{AM}{AC}\Rightarrow AM^2=AD.AC(2)\)
Xét tam giác $AEN$ và $ANB$ có:
\(\left\{\begin{matrix} \widehat{A}-\text{chung}\\ \widehat{AEN}=\widehat{ANB}(=90^0)\end{matrix}\right.\Rightarrow \triangle AEN\sim \triangle ANB(g.g)\)
\(\Rightarrow \frac{AE}{AN}=\frac{AN}{AB}\Rightarrow AN^2=AE.AB(3)\)
Từ \((1);(2);(3)\Rightarrow AM^2=AN^2\Rightarrow AM=AN\) (đpcm)
Trên tia đối của tia BA lấy I sao cho BI = DQ
\(\Delta DCQ=\Delta BCI\left(c.g.c\right)\Rightarrow\hept{\begin{cases}CQ=CI\\\widehat{DCQ}=\widehat{BCI}\end{cases}}\)
Ta có: \(\widehat{QCI}=\widehat{QCB}+\widehat{BCI}=\widehat{QCB}+\widehat{DCQ}=\widehat{BCD}=90^0\)
Ta có: \(AP+AQ+PQ=2AB\)
\(\Rightarrow AP+AQ+PQ=AP+PB+AQ+QD\)
\(\Rightarrow PQ=PB+QD\)
\(\Rightarrow PQ=PB+BI\Rightarrow PQ=PI\)
\(\Delta PCQ=\Delta PCI\left(c.c.c\right)\Rightarrow\widehat{PCQ}=\widehat{PCI}=\frac{\widehat{QCI}}{2}=\frac{90^0}{2}=45^0\)
Do: Góc ABD = Góc ACE (= 90 - A)
=> Δ ABD ∼ Δ ACE (2 Δ vuông)
=> AD.AC = AE.AB (tỉ lệ đồng dạng)
<=> AM2 = AN2 (Hệ thức lượng trong Δ vuông)
<=> AM = AN
Hay Δ AMN cân tại A.=>....
có C = 1/2 ( sđ AN- sđ MB )
D= = 1/2 ( sđ AM - sđ NB )
mà góc C= D
nên sđ AN - sđ MB = sđ AM - sđ NB
=> sđ AN + sđ NB = sđ MB + sđ AM
=> sđAB = sđ AB
=> AB là đường kính của đg tròn ( O )
khi đó AMB = ANB = 90 độ ( góc nội tiếp chắn nửa đg tròn ) mà MD , CN , AB giao nhau tại B => B là trực tâm tgiac ACD => AB vuông góc CD
Có C=1/2(sđAN-sđMB)
D=1/2(sđAM-sđNB)
Mà góc C =D
Nên sđAN-sđMB=sđAM-sđNB
=>sđAN+sđNB=sđMB+sđAM
=>sđAB=sđAB
=>AB là đường kính đường tròn (O)
khi đó AMB=ANB=90độ (góc nội tiếp chắn nửa đường tròn ) mà MD, CN, AB giao nhau tại B => B là trực tâm tam giác ACD => AB vuông góc CD
Xét ΔADB vuông tạiD và ΔAEC vuông tại E có
góc DAB chung
DO đó: ΔADB\(\sim\)ΔAEC
Suy ra: AD/AE=AB/AC
hay \(AD\cdot AC=AB\cdot AE\left(1\right)\)
Xét ΔAMC vuông tại M có MD là đường cao
nên \(AD\cdot AC=AM^2\left(2\right)\)
Xét ΔANB vuông tại N có NE là đường cao
nên \(AE\cdot AB=AN^2\left(3\right)\)
Từ (1), (2) và (3) suy ra AM=AN