Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét tứ giác APMQ có góc APM+góc AQM=180 độ
nên APMQ là tứ giác nội tiếp(1)
Xét tứ giác AHMP có góc AHM+góc APM=180 độ
nên AHMP là tứ giác nội tiếp(2)
Từ (1), (2) suy ra A,P,M,Q,H cùng thuộc 1 đường tròn
2:
Sửa đề: OH vuông góc với PQ
Xét (O) có
góc PAQ là góc nội tiếp chắn cung PQ
nên góc PAQ=1/2*góc POQ
=>góc POQ=120 độ
=>góc POH=góc QOH=60 độ
=>ΔPOH đều, ΔHOQ đều
=>OH là phân giác
=>OH vuông góc với PQ
=>OP=OH=PH=OQ=QH
=>OPHQ là hình thoi
em tự vẽ hình nha
Gọi O là trung điểm của AM
Vì tam giác AHM vuông tại H có O là trung điểm cạnh huyền AM
=> OH=OA=OM (1)
CMTT: OA=OM=OE (2)
Vì \(\hept{\begin{cases}MD\perp AB\\ME\perp AC\end{cases}\Rightarrow}\hept{\begin{cases}\widehat{MDA}=90^0\\\widehat{MEA}=90^0\end{cases}}\)
Xét tứ giác ADME có:
góc A= góc MDA = góc MEA = 90 độ
=> ADME là hình chữ nhật ( dhnb )
=> 2 đường chéo DE và AM cắt nhau tại trung điểm mỗi đường và DE=AM
Mà O là trung điểm AM
=> O là trung điểm DE
=> OD=OE (3)
Từ (1), (2) và (3) => OD=OE=OA=OM=OH
=> A,D,H,M,F cùng nằm trên 1 đường tròn
( 1 số phần cơ bản sẽ làm tắt nha, cái đấy bạn sẽ tự trình bày rõ nhá, nhất là chứng minh tứ giác nội tiếp sẽ rút ngắn lại )
a)\(\widehat{ABO}=\widehat{AEO}=90^0\)
\(\Rightarrow ABEO\)nội tiếp
=> A,B,E,O thuộc 1 đường tròn
b) Xét tam giác AMC và tam giác ACN có:
\(\hept{\begin{cases}\widehat{NAC}chung\\\widehat{ACM}=\widehat{ANC}\left(=\frac{1}{2}sđ\widebat{MC}\right)\end{cases}\Rightarrow\Delta AMC~\Delta ACN\left(g-g\right)}\)
\(\Rightarrow\frac{AM}{AC}=\frac{AC}{AN}\)
\(\Rightarrow AC^2=AM.AN\)
c) \(\widehat{MJC}+\widehat{MFC}=180^0\)
\(\Rightarrow MJCF\)nội tiếp
\(\Rightarrow\widehat{MFJ}=\widehat{MCJ}\)
Mà \(\widehat{MCJ}=\widehat{MBC}\left(=\frac{1}{2}sđ\widebat{MC}\right)\)
\(\Rightarrow\widehat{MFJ}=\widehat{MBC}\left(1\right)\)
CMTT \(\widehat{MFI}=\widehat{MCB}\left(2\right)\)
Xét tam giác MBC có: \(\widehat{CMB}+\widehat{MCB}+\widehat{MBC}=180^0\left(3\right)\)
Từ (1), (2) và (3) \(\Rightarrow\widehat{CMB}+\widehat{MFJ}+\widehat{MFI}=180^0\)
\(\Rightarrow\widehat{CMB}+\widehat{PFQ}=180^0\)
\(\Rightarrow MPFQ\)nội tiếp
\(\Rightarrow\widehat{MPQ}=\widehat{MFQ}\)mà \(\widehat{MFQ}=\widehat{MBC}\left(cmt\right)\)
\(\Rightarrow\widehat{MPQ}=\widehat{MBC}\)mà 2 góc này ở vị trí đồng vị
\(\Rightarrow PQ//BC\)
d) Xét tam giác MIF và tam giác MFJ có:
\(\hept{\begin{cases}\widehat{MIF}=\widehat{MFJ}\left(=\widehat{MBF}\right)\\\widehat{MJF}=\widehat{MFI}\left(=\widehat{MCF}\right)\end{cases}\Rightarrow\Delta MIF~\Delta MFJ\left(g-g\right)}\)
\(\Rightarrow\frac{MI}{MF}=\frac{MF}{MJ}\)
\(\Rightarrow MI.MJ=MF^2\)
MI.MJ lớn nhất \(\Leftrightarrow MF^2\)lớn nhất
Mà \(MF=\frac{1}{2}MN\)
\(\Rightarrow MF^2=\frac{1}{4}MN^2\)
\(\Rightarrow MF\)lớn nhất <=> MN lớn nhất \(\Leftrightarrow MN\)là đường kính (O)
\(\Leftrightarrow M\)là điểm chính giữa cung BC
Vậy MI.MJ lớn nhất <=> M là điểm chính giữa cung BC.
( KO hiểu thì hỏi mình nha )
hình bạn tự vẽ nha :
a.Ta có:
ˆAPM=ˆAHM=ˆAQM=90oAPM^=AHM^=AQM^=90o
→A,P,H,M,Q∈→A,P,H,M,Q∈ đường tròn đường kính AMAM
b.Từ câu a →A,P,H,M,Q∈(O,12AM)→A,P,H,M,Q∈(O,12AM)
→OP=OH=OM=OQ→OP=OH=OM=OQ
Mà ΔABCΔABC đều, AH⊥BC→ˆBAH=ˆHAC=30oAH⊥BC→BAH^=HAC^=30o
→ˆHOQ=2ˆHAQ=60o,ˆPOH=2ˆPAH=60o→HOQ^=2HAQ^=60o,POH^=2PAH^=60o
Do OP=OH,OH=OQOP=OH,OH=OQ
→ΔOPH,ΔOHQ→ΔOPH,ΔOHQ đều
→PH=OP=OQ=QH→PH=OP=OQ=QH
→OPHQ→OPHQ là hình thoi
a) Có \widehat{APM}=\widehat{AHM}=\widehat{AQM}=90^oAPM=AHM=AQM=90o nên 5 điểm A, P, M, H, Q cùng thuộc đường tròn đường kính AM.
b) Vì AH là đường cao của tam giác đều ABC nên \widehat{BAH}=\widehat{HAC}=30^oBAH=HAC=30o.
Vì A, P, M, H, Q cùng nằm trên đường tròn tâm O nên OP = OH = OQ = OM và \widehat{POH}=2\widehat{PAH}=60^oPOH=2PAH=60o ; \widehat{QOH}=60^oQOH=60o suy ra OPH và OQH là hai tam giác đều, do đó OQHP là hình thoi.
c) Gọi r là bán kính đường tròn ngoại tiếp đa giác APMHQ thì AM = 2r và OPH, OQH là hai tam giác đều cạnh r. Do đó PQ=2.\dfrac{r\sqrt{3}}{2}=AM.\dfrac{\sqrt{3}}{2}\ge AH.\dfrac{\sqrt{3}}{2}PQ=2.2r3=AM.23≥AH.23
Do đó PQ ngắn nhất khi và chỉ khi M là trung điểm BC.