Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình bạn tự vẽ nha :
a.Ta có:
ˆAPM=ˆAHM=ˆAQM=90oAPM^=AHM^=AQM^=90o
→A,P,H,M,Q∈→A,P,H,M,Q∈ đường tròn đường kính AMAM
b.Từ câu a →A,P,H,M,Q∈(O,12AM)→A,P,H,M,Q∈(O,12AM)
→OP=OH=OM=OQ→OP=OH=OM=OQ
Mà ΔABCΔABC đều, AH⊥BC→ˆBAH=ˆHAC=30oAH⊥BC→BAH^=HAC^=30o
→ˆHOQ=2ˆHAQ=60o,ˆPOH=2ˆPAH=60o→HOQ^=2HAQ^=60o,POH^=2PAH^=60o
Do OP=OH,OH=OQOP=OH,OH=OQ
→ΔOPH,ΔOHQ→ΔOPH,ΔOHQ đều
→PH=OP=OQ=QH→PH=OP=OQ=QH
→OPHQ→OPHQ là hình thoi
a) Có \widehat{APM}=\widehat{AHM}=\widehat{AQM}=90^oAPM=AHM=AQM=90o nên 5 điểm A, P, M, H, Q cùng thuộc đường tròn đường kính AM.
b) Vì AH là đường cao của tam giác đều ABC nên \widehat{BAH}=\widehat{HAC}=30^oBAH=HAC=30o.
Vì A, P, M, H, Q cùng nằm trên đường tròn tâm O nên OP = OH = OQ = OM và \widehat{POH}=2\widehat{PAH}=60^oPOH=2PAH=60o ; \widehat{QOH}=60^oQOH=60o suy ra OPH và OQH là hai tam giác đều, do đó OQHP là hình thoi.
c) Gọi r là bán kính đường tròn ngoại tiếp đa giác APMHQ thì AM = 2r và OPH, OQH là hai tam giác đều cạnh r. Do đó PQ=2.\dfrac{r\sqrt{3}}{2}=AM.\dfrac{\sqrt{3}}{2}\ge AH.\dfrac{\sqrt{3}}{2}PQ=2.2r3=AM.23≥AH.23
Do đó PQ ngắn nhất khi và chỉ khi M là trung điểm BC.
a) Áp dụng hệ quả định lý thales:
\(\frac{MQ}{CD}+\frac{MP}{AB}=\frac{AM}{AC}+\frac{MC}{AC}=\frac{AC}{AC}=1\)
Áp dụng BĐT bunyakovsky:
\(\left(\frac{1}{AB^2}+\frac{1}{CD^2}\right)\left(MP^2+MQ^2\right)\ge\left(\frac{MP}{AB}+\frac{MQ}{CD}\right)^2=1\)
\(\Rightarrow\frac{1}{AB^2}+\frac{1}{CD^2}\ge\frac{1}{MP^2+MQ^2}\)
dấu = xảy ra khi \(\frac{MC}{AM}=\frac{CD^2}{AB^2}\)
b) chưa nghĩ :v
1: Xét tứ giác APMQ có góc APM+góc AQM=180 độ
nên APMQ là tứ giác nội tiếp(1)
Xét tứ giác AHMP có góc AHM+góc APM=180 độ
nên AHMP là tứ giác nội tiếp(2)
Từ (1), (2) suy ra A,P,M,Q,H cùng thuộc 1 đường tròn
2:
Sửa đề: OH vuông góc với PQ
Xét (O) có
góc PAQ là góc nội tiếp chắn cung PQ
nên góc PAQ=1/2*góc POQ
=>góc POQ=120 độ
=>góc POH=góc QOH=60 độ
=>ΔPOH đều, ΔHOQ đều
=>OH là phân giác
=>OH vuông góc với PQ
=>OP=OH=PH=OQ=QH
=>OPHQ là hình thoi