K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2017

A B C x H

a) Xét \(\Delta ABC\) có:

Góc ngoài tại đỉnh A = \(\widehat{B}+\widehat{C}\)

\(\Rightarrow\widehat{A_1}+\widehat{A_2}=2\widehat{B}\) ( Góc A1, góc A2 là góc được tạo ra bởi tia Ax)

\(\widehat{A_1}=\widehat{A_2}\)

\(\Rightarrow2\widehat{A_2}=2\widehat{B}\Rightarrow\widehat{A_2}=\widehat{B}\)

Mà 2 góc này ở vị trí so le trong

=> Ax // BC

b) Xét \(\Delta ABC\) có: \(\widehat{B}=\widehat{C}\)

=> \(\Delta ABC\) cân

=> AH là đường cao đồng thời là tia phân giác góc A

=> AH là tia phân giác \(\widehat{BAC}\)

17 tháng 8 2017

A B C x H y

a) \(\widehat{CAy}=\widehat{B}+\widehat{C}=2\widehat{C}\)

=> \(\widehat{xAC}=\widehat{C}\)

Mà góc xAC và góc C là cặp góc so le trong => Ax // BC

b) Vì \(\widehat{B}=\widehat{C}\) => tam giác ABC là tam giác cân => AB = AC

Xét \(\Delta ABH\)\(\Delta ACH\) có:

AB = AC (cmt)

\(\widehat{B}=\widehat{C}\left(gt\right)\)

AH : cạnh chung

\(\Rightarrow\Delta ABH=\Delta ACH\) (c.g.c)

\(\Rightarrow\widehat{BAH}=\widehat{CAH}\) (hai góc tương ứng)

=> AH là tia p/g của góc BAC

12 tháng 9 2017

Câu 1

a.

Xét \(\Delta ABC\) có :

\(\widehat{ABC}+\widehat{BAC}+\widehat{BCA}=180^o\) ( định lý tổng 3 góc của 1 \(\Delta\) )

\(\Rightarrow\widehat{BCA}=40^o\) (1)

Ta có Ax là tia đối của AB

suy ra \(\widehat{BAC}+\widehat{CAx}=180^o\)

\(\widehat{CAx}=80^o\)

lại có Ay là tia phân giác \(\widehat{CAx}\)

\(\Rightarrow\widehat{xAy}=\widehat{yAc}=\dfrac{\widehat{CAx}}{2}=\dfrac{80^o}{2}=40^o\) (2)

Từ (1)(2) suy ra \(\widehat{yAc}=\widehat{ACB}=40^o\)

mà chúng ở vị trí so le trong

\(\Rightarrow\) Ay//BC

Bài 2

Rảnh làm sau , đến giờ học rồi .

4 tháng 11 2019

a/ tam giác BAH và tam giác CAH có 

AB=AC ( tam giác ABC cân vì góc B = góc C)

góc BHA = góc CHA = 90 độ

góc B = góc C

=> tam giác BAH = tam giác CAH (CH - GN)

=>góc BAH = góc HAC

18 tháng 12 2018

botay.com.vn

18 tháng 12 2018

hình Imgur: Sự kỳ diệu của Internet : https://imgur.com/a/OpRrWs8

a) nhìn hình cũng đủ thấy \(\Delta ABC>\Delta ACH\)

hai tam giác không tương ứng 

\(\Delta ACH=\frac{1}{2}\Delta ABC\)

thực chất mình cũng không biết cách cm nó k bằng nhau :3 

b) Vì H là tia phân giác của \(\widehat{BAC}\)

\(\Rightarrow\Delta ABH=\Delta ACH\left(c.g.c\right)\)

\(\widehat{H_1}=\widehat{H_2}\)( 2 góc kề bù mà H là tia phân giác )

\(\Rightarrow\widehat{H_1}+\widehat{H_2}=180^o\)

\(\Rightarrow2H_1=\frac{180^o}{2}=90^o\)

\(\Rightarrow AH\perp BC\)(1)

c) gọi I là trung điểm của cạnh DE

cm giống như trên 

\(\Rightarrow AI\perp DE\)(2)

Từ (1) và (2) ta có :

\(\Rightarrow\hept{\begin{cases}AH\perp BC\\AI\perp DE\end{cases}}\)

=> DE // BC
\(I\in AH\)nên vẫn có thể cm theo kiểu đó maybe ....

không chắc đâu:)

16 tháng 2 2020

a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)

\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)

b)Ta có:

\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)

Lại có:

\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)

\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)

Suy ra:\(\widehat{ADC}=\widehat{DAC}\)

\(\Rightarrow\Delta ADC\)cân tại C

c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)

\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)

Mà \(\widehat{BAD}=\widehat{DAH}\)

\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)

\(\Rightarrow\)\(\Delta KAD\)cân tại K

d)Xét \(\Delta CDK-\Delta CAK\)

\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)

\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)

\(\Rightarrowđpcm\)

e)Xét\(\Delta AID-\Delta AHD\)

\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)

\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)

\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)

\(\Rightarrow DI//AC\)

17 tháng 11 2016

Ta có hình vẽ:

Gọi phân giác C cắt AH tại M

Ta có: góc B + góc C = 900

Ta có: góc B + góc BAH = 900

=> góc BAH = góc C

Theo giả thiết, AI là phân giác của góc BAH

nên góc BAI = góc IAH

Theo giả thiết, CI là phân giác của góc C

nên góc HCI = góc ICA

Vì góc BAH = góc C nên góc IAH = góc HCI (1)

Ta có: góc IMA = góc HMC (đối đỉnh) (2)

Ta có: tổng ba góc của 1 tam giác bằng 1800 (3)

Từ (1),(2),(3) => góc AIM = góc MHC = 900

Vậy góc AIC = 900 (đpcm)