Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH và ΔACH có
AB=AC
BH=CH
AH chung
Do đó: ΔABH=ΔACH
=>góc BAH=góc CAH
=>AH là phân giác của góc BAC
b: Xét ΔAEH và ΔADH có
AE=AD
góc EAH=góc DAH
AH chung
Do đo; ΔAEH=ΔADH
=>góc AEH=góc ADH=90 độ
=>HE vuông góc với AB
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Bạn tự vẽ hình nha.
a) Xét tam giác ABH và tam giác ACH
Ta có: Góc AHB = Góc AHC ( = 90 độ )
AB = AC ( Vì tam giác ABC cân )
Góc ABH = Góc ACH ( Vì tam giác ABC cân )
=> Tam giác ABH = Tam giác ACH ( ch-gn )
=> HB = HC ( hai cạnh tương ứng )
Góc BAH = Góc CAH ( Hai góc tương ứng 0
=> Đpcm
b) Vì HB = HC ( câu a )
Mà BC = HB + HC
=> HB = HC = BC / 2 = 8 / 2 = 4 cm
Xét tam giác ABH vuông tại H
=> AH2 + BH2 = AB2
Hay AH2 + 42 = 52
=> AH2 = 52 - 42
=> AH2 = 9
=> AH = 3
c) Xét tam giác AHD và tam giác AHE
Ta có: Góc ADH = Góc AEH ( = 90 độ )
AH là cạnh huyển chung
Góc BAH = Góc CAH ( câu a )
=> Tam giác AHD = Tam giác AHE ( ch-gn )
=> HD = HE ( Hai cạnh tương ứng )
=> Tam giác HDE cân tại H
=> Đpcm
Xét tg AHB và tg AHC,ta có:
AH chung
gBAH=gCAH(tia phân giác của góc A cắt BC tại H)
AB=AC(gt)
=>tg AHB =tg AHC(c-g-c)
Xét tg ABC,có:AB=AC (gt)
=>tg ABC cân tại A
mà AH là tia phân giác
=>AH là đường cao
=>AH vuông góc vs BC
Ta có:g BAH+g ABH=g AHB=90*
và gDHB+gDBH=gBDH=90*
=>góc HAB = góc BHD
gợi ý phần c
gọi F là giao điểm của AH và DE
Xét tg ADH và tg AEH,có
AH chung
ADH=AEH=90
DAH=EAH
=>tg ADH =tg AEH(ch-gn)
=>AD=AE
=>tg ADE cân tại A
mà AF là tia phân giác
=>AF vuông góc vs DE
ta có BHF=EFH=90
=>DE//BC
p/s:gợi ý thôi nên trình bày cẩn thận hơn nhé.
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
Suy ra: \(\widehat{BAH}=\widehat{CAH}\)
hay AH là tia phân giác của góc BAC
b: Xét ΔADH và ΔAEH có
AD=AE
\(\widehat{DAH}=\widehat{EAH}\)
AH chung
Do đó; ΔADH=ΔAEH
SUy ra: \(\widehat{ADH}=\widehat{AEH}=90^0\)
hay HE\(\perp\)AC
c: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
botay.com.vn
hình Imgur: Sự kỳ diệu của Internet : https://imgur.com/a/OpRrWs8
a) nhìn hình cũng đủ thấy \(\Delta ABC>\Delta ACH\)
hai tam giác không tương ứng
\(\Delta ACH=\frac{1}{2}\Delta ABC\)
thực chất mình cũng không biết cách cm nó k bằng nhau :3
b) Vì H là tia phân giác của \(\widehat{BAC}\)
\(\Rightarrow\Delta ABH=\Delta ACH\left(c.g.c\right)\)
\(\widehat{H_1}=\widehat{H_2}\)( 2 góc kề bù mà H là tia phân giác )
\(\Rightarrow\widehat{H_1}+\widehat{H_2}=180^o\)
\(\Rightarrow2H_1=\frac{180^o}{2}=90^o\)
\(\Rightarrow AH\perp BC\)(1)
c) gọi I là trung điểm của cạnh DE
cm giống như trên
\(\Rightarrow AI\perp DE\)(2)
Từ (1) và (2) ta có :
\(\Rightarrow\hept{\begin{cases}AH\perp BC\\AI\perp DE\end{cases}}\)
=> DE // BC
\(I\in AH\)nên vẫn có thể cm theo kiểu đó maybe ....
không chắc đâu:)