Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
a,xét tam giác ABD và tam giác ACE có:
AB=AC(gt)
vì \(\widehat{ABC}\)=\(\widehat{ACB}\)suy ra \(\widehat{ABD}\)=\(\widehat{ACE}\)
BD=CE(gt)
\(\Rightarrow\)\(\Delta\)ABD=\(\Delta\)ACE(c.g.c)
b,xét 2 tam giác vuông ADH và AEK có:
AD=AE(theo câu a)
\(\widehat{DAH}\)\(\widehat{EAK}\)(theo câu a)
\(\Rightarrow\)\(\Delta\)ADH=\(\Delta\)AEK(CH-GN)
\(\Rightarrow\)DH=EK
c,xét tam giác AHO và tam giác AKO có:
AH=AK(theo câu b)
AO cạnh chung
\(\Rightarrow\)\(\Delta\)AHO=\(\Delta\)AKO( cạnh góc vuông-cạnh huyền)
\(\Rightarrow\)\(\widehat{HAO}\)=\(\widehat{KAO}\)
\(\Rightarrow\)AO là phận giác của góc BAC
d,câu này dễ nên bn có thể tự làm tiếp nhé
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc BAD chung
DO đo:ΔADB=ΔAEC
b: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
c: Xét ΔIEB vuông tại E và ΔIDC vuông tại D có
BE=CD
\(\widehat{IBE}=\widehat{ICD}\)
Do đó: ΔIEB=ΔIDC
Suy ra: IB=IC
hay I nằm tren đường trung trực của BC(1)
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là trung trực của BC(2)
Từ (1) và (2) suy ra A,I,M thẳng hàng
A B C E D O
a.Xét\(\Delta ADB\)và\(\Delta AEC\)có:
\(\widehat{BDA}=\widehat{CEA}=90^o\left(gt\right)\)
\(\widehat{A}\)chung
AB=AC(gt)
=> \(\Delta ADB=\Delta AEC\)(cạnh huyền góc nhọn)
b. Theo a ta có: \(\widehat{DBE}=\widehat{DCE}\)(2 góc tương ứng)
Mà \(\widehat{B}=\widehat{C}\)( tính chất tam giác cân)
=> \(\widehat{OBC}=\widehat{OCB}\)
=> Tam giác BOC cân tại O
câu b sai đề thì phải bạn ạ
còn câu c thì mình không biết M là giao điểm của BC với cạnh nào nên không làm được
P/s : Hình bạn tự vẽ giúp mình nha. Cảm ơn bạn nhiều !
a) Xét 🔺ABD và 🔺ACE có :
AB = AC ( 🔺ABC cân tại A )
^ABC = ^ACB (🔺ABC cân tại A )
BD = CE ( gt )
Suy ra 🔺ABD = 🔺ACE ( c.g.c )
b) Xét 🔺HBD và 🔺KCE có :
^BHD = ^CKE = 90 độ
BD = BE ( gt )
^ABC = ^ACB ( 🔺ABC cân tại A )
Suy ra 🔺HBD = 🔺KCE ( ch - gn )
=> DH = EK ( 2 cạnh tương ứng )
c) Xét 🔺ABM và 🔺ACM có :
AB = AC ( 🔺ABC cân tại A )
MB = MC ( vì M là trung điểm của BC )
AM là cạnh chung
Suy ra 🔺ABM = 🔺ACM ( c.c.c )
=> ^BAM = ^CAM ( 2 góc tương ứng )
hay AM là tia phân giác của ^BAC (1)
mà M nằm giữa A và O ( hình vẽ )
=> AO cũng là tia phân giác của ^BAC (2)
d) Từ (1) và (2) => A, M, O thẳng hàng
d) Xét 2 \(\Delta\) vuông \(BCD\) và \(KCD\) có:
\(\widehat{BDC}=\widehat{KDC}=90^0\left(gt\right)\)
\(BD=KD\) (vì D là trung điểm của \(BK\))
Cạnh CD chung
=> \(\Delta BCD=\Delta KCD\) (2 cạnh góc vuông tương ứng bằng nhau).
=> \(\widehat{DBC}=\widehat{DKC}\) (2 góc tương ứng).
Mà \(\widehat{ECB}=\widehat{DBC}\left(cmt\right)\)
=> \(\widehat{ECB}=\widehat{DKC}\left(đpcm\right).\)
Chúc bạn học tốt!
A B C E D O
a)Xét ΔADB và ΔAEC có:
\(\widehat{ADB}=\widehat{AEC}=90^o\)
AB=AC(gt)
\(\widehat{A}\) : góc chung
=> ΔADB=ΔAEC ( cạnh huyền - góc nhọn)
=> BD=CE
b) Vì ΔADB=ΔAEC(cmt)
=> \(\widehat{ABD}=\widehat{ACE};AD=AE\)
Có: AB=AE+BE
AC=AD+DC
Mà: AB=AC(gt); AE=AD(cmt)
=>BE=DC
Xét ΔOEB và ΔODC có:
\(\widehat{OEB}=\widehat{ODC}=90^o\)
BE=DC(cmt)
\(\widehat{EBO}=\widehat{DCO}\left(cmt\right)\)
=> ΔOEB=ΔODC(g.c.g)
c) Vì: ΔOEB=ΔODC (cmt)
=> OB=OC
Xét ΔAOB và ΔAOC có:
AB=AC(gt)
\(\widehat{ABO}=\widehat{ACO}\left(cmt\right)\)
OB=OC(cmt)
=> ΔAOB=ΔAOC(c.g.c)
=> \(\widehat{OAB}=\widehat{OAC}\)
=> AO là tia pg của \(\widehat{BAC}\)
cảm ơn bạn