Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H D E F
a) DE là đường trung bình của tam giác nên DE//BC và DE = 1/2 BC = BF
=> BDEF là hình bình hành vì có cặp cạnh đối DE và BF song song và bằng nhau.
b) Tam giác vuông HBA có HD là trung tuấn ứng với cạnh huyền => HD = 1/2 AB = BD
=> Tam giác DBH cân tại D.
c) Điểm G ở đâu hả bạn?
a. Xét ∆AHB vuông tại H có HM là đường
đường trung tuyến ( gt ) nên HM =
2AB( 1 )
Trong ∆ABC có N là trung điểm của AC ( gt ) O
và K là trung điểm của BC ( gt ) nên NK là
đường trung bình của ∆ABC → NK = 2AB( 2 ) B H K C
Từ ( 1 ) & ( 2 ) → HM = NK I
b) Trong ∆AHC vuông tại H có HN là đường trung tuyến ( gt ) nên HN = AC( 3 )
+ ∆ABC có M là trung điểm của AB ( gt ) và K là trung điểm của BC ( gt ) nên MK là
đường trung bình của ∆ABC → MK = AC ( 4)
Từ ( 3 ) & ( 4 ) → HN = 2MK (a)
+ ∆ABC có M là trung điểm của AB ( gt ) và N là trung điểm của AC ( gt ) nên MN là
đường trung bình của ∆ABC → MN // BC hay MN // KH
→ MNKH là hình thang (b). Từ (a) & (b) → MNKH là hình thang cân.
Xét \(\Delta ABC\)có:
DB = DA (giả thiết)
AE = CE (giả thiết)
\(\Rightarrow DE\)là đường trung bình của \(\Delta ABC\)
\(DE//BC\)(tính chất) \(\Rightarrow DE//BF\)(1)
Và \(2DE=BC\)(tính chất)
Mà \(2BF=BC\)(vì \(BF=CF\))
\(\Rightarrow2DE=2BF\Rightarrow DE=BF\)(2)
Xét tứ giác BDEF có: (1) và (2).
\(\Rightarrow BDEF\)là hình bình hành.
Vậy BDEF là hình bình hành.
a) Xét ΔABC có
F là trung điểm của AC(gt)
M là trung điểm của BC(gt)
Do đó: FM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒FM//AB và \(FM=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)
mà E∈AB và \(AE=\dfrac{AB}{2}\)(E là trung điểm của AB)
nên FM//AE và FM=AE
Xét tứ giác AEMF có
FM//AE(cmt)
FM=AE(cmt)
Do đó: AEMF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành AEMF có \(\widehat{FAE}=90^0\)(ΔABC vuông tại A)
nên AEMF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)