Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử a <0
Vì abc>0 nên bc <0
Có ab+bc+ca>0
<=>a(b+c)>-bc
Vì bc<0=>-bc>0
=>a(b+c)>0
Mà a<0 nên b+c<0
=> a+b+c<0
Mà theo đề a+b+c>0
=> điều giả sử sai
=> điều pk chứng minh
Giả sử ba số aa, bb, cc không đồng thời là các số dương thì có ít nhất một số không dương.
Không mất tính tổng quát, ta giả sử a ≤ 0
Nếu a = 0a = 0 thì abc = 0abc = 0 (mâu thuẫn với giả thiết abc>0abc > 0)
Nếu a < 0a < 0 thì từ abc > 0 \Rightarrow bc < 0abc > 0⇒ bc < 0.
Ta có ab + bc + ca > 0 \Leftrightarrow a(b + c) > -bc \Rightarrow a(b+c) > 0 \Rightarrow b + c < 0 \Rightarrow a + b + c < 0ab + bc + ca > 0 ⇔ a(b+c) > − bc ⇒ a(b+c) > 0 ⇒ b + c < 0 ⇒ a + b + c < 0 (mâu thuẫn với giả thiết)
Vậy cả ba số aa, bb và cc đều dương.
a) Giả sử:
\(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Rightarrow\frac{a^2+2ab+b^2}{4}\ge ab\)
\(\Rightarrow\frac{a^2+2ab+b^2}{4}-ab\ge0\)
\(\Rightarrow\frac{\left(a-b\right)^2}{4}\ge0\Rightarrow\left(a-b\right)^2\ge0\) (luôn đúng )
=> đpcm
b, Bất đẳng thức Cauchy cho các cặp số dương \(\frac{bc}{a}\)và \(\frac{ca}{b};\frac{bc}{a}\)và \(\frac{ab}{c};\frac{ca}{b}\)và \(\frac{ab}{c}\)
Ta lần lượt có : \(\frac{bc}{a}+\frac{ca}{b}\ge\sqrt[2]{\frac{bc}{a}.\frac{ca}{b}}=2c;\frac{bc}{a}+\frac{ab}{c}\ge\sqrt[2]{\frac{bc}{a}.\frac{ab}{c}}=2b;\frac{ca}{b}+\frac{ab}{c}\ge\sqrt[2]{\frac{ca}{b}.\frac{ab}{c}}\)
Cộng từng vế ta đc bất đẳng thức cần chứng minh . Dấu ''='' xảy ra khi \(a=b=c\)
c, Với các số dương \(3a\) và \(5b\), Theo bất đẳng thức Cauchy ta có \(\frac{3a+5b}{2}\ge\sqrt{3a.5b}\)
\(\Leftrightarrow\left(3a+5b\right)^2\ge4.15P\)( Vì \(P=a.b\))
\(\Leftrightarrow12^2\ge60P\)\(\Leftrightarrow P\le\frac{12}{5}\Rightarrow maxP=\frac{12}{5}\)
Dấu ''='' xảy ra khi \(3a=5b=12:2\)
\(\Leftrightarrow a=2;b=\frac{6}{5}\)
\(\hept{\begin{cases}y-2>0\\x+1< 0\end{cases}}\Rightarrow\hept{\begin{cases}y>2\\x< -1\end{cases}}\)
Giả sử ngược lại, trong 3 số a , b , c có ít nhất 1 số \(\le0\). Vì a, b, c vai trò như nhau, nên ta có thể xem \(a\le0\)
Khi đó : \(abc>0\Rightarrow\)\(a<0,bc<0\)
\(\Rightarrow a\left(b+c\right)=ab+ac>-bc>0\)
\(\Rightarrow a\left(b+c\right)>0\)
\(\Rightarrow b+c<0\) ( Vì chứng minh trên có a < 0 )
\(\Rightarrow a+b+c<0\Rightarrow\) vô lí
Vậy \(a,b,c>0\)
CHẮC CHẮN A,B,C>0