K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2018

Để \(A=\frac{2\sqrt{x}+1}{x-1}\in Z\)

\(\Rightarrow2\sqrt{x}+1⋮x-1\)

\(\Rightarrow\left(2\sqrt{x}+1\right)^2⋮x-1\)

\(\Rightarrow\left(2\sqrt{x}\right)^2+1⋮x-1\)

\(\Rightarrow4x+1⋮x-1\)

\(\Rightarrow4\left(x-1\right)+5⋮x-1\)

\(\Rightarrow5⋮x-1\Rightarrow x-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Ta có bảng:  Bạn tự kẻ 

Kết quả cuối cùng bạn phải xét xem  có thỏa mãn ko nhé

4 tháng 10 2018

\(A=\frac{2x\sqrt{x}+1}{x-1}\)

\(A=\frac{x-2\sqrt{x}+1}{x-1}-\frac{x}{x-1}\)

\(A=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{x-1}{x-1}+\frac{1}{x-1}\)

\(A=\frac{\sqrt{x}-1}{\sqrt{x}+1}-1+\frac{1}{x-1}\)

\(A=\frac{\sqrt{x}+1}{\sqrt{x}+1}-\frac{2}{\sqrt{x}+1}-1+\frac{1}{x-1}\)

\(A=1-\frac{2}{\sqrt{x}+1}-1+\frac{1}{x-1}\)

\(A=\frac{1}{x-1}-\frac{2}{\sqrt{x}+1}\)

Để A là số nguyên \(\Rightarrow\)\(\left(x-1\right)\inƯ\left(1\right)=\left\{1;-1\right\}\)\(\Rightarrow\)\(x\in\left\{0;2\right\}\) \(\left(1\right)\)

Và \(\left(\sqrt{x}+1\right)\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)\(\Rightarrow\)\(x\in\left\{0;1\right\}\) \(\left(2\right)\)

Từ (1) và (2) suy ra x thỏa mãn hai điều kiện là \(x=0\) ( thỏa mãn giả thiết ) 

Vậy để A nguyên thì \(x=0\)

Chúc bạn học tốt ~ 

a) Ta có: \(A=\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\cdot\left(\frac{1-\sqrt{x}}{1-x}\right)^2\)

\(=\left(\frac{1-x\sqrt{x}+\sqrt{x}\left(1-\sqrt{x}\right)}{1-\sqrt{x}}\right)\cdot\left(\frac{1}{1+\sqrt{x}}\right)^2\)

\(=\frac{1-x\sqrt{x}+\sqrt{x}-x}{1-\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)

\(=\frac{-\left(x-1\right)\left(-1-\sqrt{x}\right)}{1-\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)

\(=\frac{\left(1+\sqrt{x}\right)\cdot\left(-1-\sqrt{x}\right)}{\left(1+\sqrt{x}\right)^2}\)

\(=\frac{-1\cdot\left(1+\sqrt{x}\right)^2}{\left(1+\sqrt{x}\right)^2}=-1\)

19 tháng 1 2019

a ) ĐK : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)\(P=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^{^2}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+3}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{x+4\sqrt{x}+3}\)

12 tháng 8 2019

a) đk : \(x\ge0\) ; \(x\ne1\)

A=\(\left(\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}+1\right)}-\frac{x+1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)

\(=\left(\frac{-\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\) \(=\frac{1-\sqrt{x}}{x+1}\)

b) đk : \(x\ne0;x\ne1\)

B=\(\left(\frac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{x-1}\right):\left(\frac{1-x}{2\sqrt{x}}\right)^2\) \(=\left(\frac{-2\sqrt{x}}{x-1}\right):\left(\frac{1-x}{2\sqrt{x}}\right)^2\) \(=\frac{-4x}{\left(x-1\right)^3}\)