Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(P=\left(\frac{3}{\sqrt{x}-1}+\frac{\sqrt{x}-3}{x-1}\right):\left(\frac{x+2}{x+\sqrt{x}-2}-\frac{\sqrt{x}}{\sqrt{x}+2}\right).\)
\(P=\left(\frac{3}{\sqrt{x}-1}+\frac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{x+2}{\sqrt{x^2}-1+\sqrt{x}-1}-\frac{\sqrt{x}}{\sqrt{x}+2}\right).\)
\(P=\left(\frac{3\sqrt{x}+3+\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{x+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}}{\sqrt{x}+2}\right).\)
\(P=\left(\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\)
\(P=\left(\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{x+2-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\)
\(P=\left(\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\)
\(P=\left(\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{1}{\left(\sqrt{x}-1\right)}\right)\)
\(P=\left(\frac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\left(\frac{\sqrt{x}-1}{1}\right)\)
=> \(P=\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)}\)
b/ \(P=\frac{4\sqrt{x}}{\left(\sqrt{x}+1\right)}=\sqrt{x}-1\)
<=> \(4\sqrt{x}=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)
<=> \(4\sqrt{x}=x-1\). Bình phương 2 vế, ta được:
<=> 16x=(x-1)2
<=> 16x=x2-2x+1
<=> x2-18x+1=0
\(\Delta'=81-1=80=>\sqrt{\Delta'}=4\sqrt{5}\)
=> \(x_1=9-4\sqrt{5}\)
\(x_2=9+4\sqrt{5}\)
ĐKXĐ: \(x\ge0;x\ne1\)
\(P=\left(\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{\sqrt{x}}{\sqrt{x}-1}\right):\frac{2}{\sqrt{x}+1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)-\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{2}{\sqrt{x}+1}\)
\(=\frac{x-\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{2}{\sqrt{x}+1}\)
\(=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\frac{\sqrt{x}+1}{2}\)
\(=\frac{-\sqrt{x}}{\sqrt{x}-1}\)
Để p = -2 \(\Rightarrow\frac{-\sqrt{x}}{\sqrt{x}-1}=-2\)
\(\frac{-\sqrt{x}}{\sqrt{x}-1}=-2\)
\(\Rightarrow-\sqrt{x}=-2\left(\sqrt{x}-1\right)\)
\(\Rightarrow-\sqrt{x}=-2\sqrt{x}+2\)
\(\Rightarrow-\sqrt{x}+2\sqrt{x}=2\)
\(\Rightarrow\sqrt{x}=2\)
\(\Rightarrow x=4\)
ĐKXĐ: \(x\ge0\)
a/ Đề \(=\left(\frac{1-\sqrt{x}^3}{1-\sqrt{x}}+\sqrt{x}\right)\left(\frac{1+\sqrt{x}^3}{1+\sqrt{x}}-\sqrt{x}\right)\)
\(=\left[\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}+x\right)}{1-\sqrt{x}}+\sqrt{x}\right]\left[\frac{\left(1+\sqrt{x}\right)\left(1-\sqrt{x}+x\right)}{1+\sqrt{x}}-\sqrt{x}\right]\)
\(=\left(1+2\sqrt{x}+x\right)\left(1-2\sqrt{x}+x\right)\)
\(=\left(1+\sqrt{x}\right)^2\left(1-\sqrt{x}\right)^2\)
\(=\left[\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)\right]^2=\left(1-x\right)^2\)
b/ \(P< 7-4\sqrt{3}\Leftrightarrow\left(1-x\right)^2< 7-4\sqrt{3}\)
\(\Rightarrow\left(1-x\right)^2< \left(2-\sqrt{3}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}1-x< 2-\sqrt{3}\Rightarrow x>-1+\sqrt{3}\\1-x< \sqrt{3}-2\Rightarrow x>3-\sqrt{3}\end{cases}}\)
Vậy \(x>3-\sqrt{3}\)