K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2022

Sử dụng bất đẳng thức Bunhiacopxki dạng phân thức, chú ý đến dấu đẳng thức xẩy ra thì ta được:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{3ab}+\frac{1}{3bc}+\frac{1}{3ca}\)sẽ lớn hơn hoặc bằng:

\(\frac{16}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}\ge\frac{16}{\left(a+b+c\right)^2}+\frac{1}{3}\left(a+b+c\right)^2=12\)

\(\Rightarrow\)Ta cần chứng minh: \(\frac{2}{3}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\ge18\)

Để ý tiếp bất đẳng thức Bunhiacopxki ta được:

\(\frac{2}{3}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\ge\frac{6}{ab+bc+ca}\ge\frac{6}{\frac{1}{3}\left(a+b+c\right)^2}=18\)

Do đó ta có bất đẳng thức:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)

Vậy bất đẳng thức được chứng minh.

NV
3 tháng 7 2020

4.

\(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}=\frac{a^4}{ab}+\frac{b^4}{bc}+\frac{c^4}{ac}\ge\frac{\left(a^2+b^2+c^2\right)}{ab+bc+ca}\)

\(\Rightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge\frac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)

Dấu "=" xảy ra khi \(a=b=c\)

5.

\(\frac{a}{bc}+\frac{b}{ca}\ge2\sqrt{\frac{ab}{bc.ca}}=\frac{2}{c}\) ; \(\frac{a}{bc}+\frac{c}{ab}\ge\frac{2}{b}\) ; \(\frac{b}{ca}+\frac{c}{ab}\ge\frac{2}{a}\)

Cộng vế với vế:

\(2\left(\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Rightarrow\frac{a}{bc}+\frac{b}{ca}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

NV
3 tháng 7 2020

1.

Áp dụng BĐT \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Rightarrow\left(\sqrt{ab}\right)^2+\left(\sqrt{bc}\right)^2+\left(\sqrt{ca}\right)^2\ge\sqrt{ab}.\sqrt{bc}+\sqrt{ab}.\sqrt{ac}+\sqrt{bc}.\sqrt{ac}\)

\(\Rightarrow ab+bc+ca\ge\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)

2.

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt[]{\frac{ab.bc}{ca}}=2b\) ; \(\frac{ab}{c}+\frac{ac}{b}\ge2a\) ; \(\frac{bc}{a}+\frac{ac}{b}\ge2c\)

Cộng vế với vế:

\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\)

3.

Từ câu b, thay \(c=1\) ta được:

\(ab+\frac{b}{a}+\frac{a}{b}\ge a+b+1\)

25 tháng 11 2019

1)

Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

6 tháng 2 2020

à thôi cảm ơn mình ra rồi ạ

16 tháng 2 2021

giúp với 

29 tháng 12 2019

Ta co:

\(VT=\Sigma_{cyc}\frac{a}{ca+1}=\Sigma_{cyc}\frac{a}{ca+abc}=\Sigma_{cyc}\frac{1}{c+bc}\)

Xet

\(\Sigma_{cyc}\frac{1}{c+bc}\le\frac{1}{4}\Sigma_{cyc}\left(\frac{1}{c}+\frac{1}{bc}\right)=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{1}{4}\left(ab+bc+ca+a+b+c\right)\)

bdt can chung minh thanh

\(ab+bc+ca+a+b+c\le2\left(a^2+b^2+c^2\right)\)

Ta lai co:

\(a^2+b^2+c^2\ge ab+bc+ca\)

Gio ta can chung minh:

\(a^2+b^2+c^2\ge a+b+c\)

Ta co hai danh gia:

\(a+b+c\le\sqrt{3\left(a^2+b^2+c^2\right)}\)

\(1=\sqrt[3]{abc}\le\frac{a+b+c}{3}\le\frac{\sqrt{3\left(a^2+b^2+c^2\right)}}{3}\Rightarrow a^2+b^2+c^2\ge3\)

Suy ra can chung minh:

\(a^2+b^2+c^2\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2-3\right)\ge0\) (đúng)

Dau '=' xay ra khi \(a=b=c=1\)

29 tháng 12 2019

mn giup voi minh can gap lam

Vũ Minh TuấnBăng Băng 2k6Nguyễn Việt LâmPhạm Lan HươngNguyễn Huy Tú Nguyễn Thị Thùy TrâmNo choice teentthbảo phạmHo Nhat Minh

NV
21 tháng 10 2019

\(P=\frac{a^2}{a+\sqrt{bc}}+\frac{b^2}{b+\sqrt{ca}}+\frac{c^2}{c+\sqrt{ab}}\)

\(P\ge\frac{\left(a+b+c\right)^2}{a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}=\frac{1}{1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}\ge\frac{1}{1+\left(a+b+c\right)}=\frac{1}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

19 tháng 2 2022

Từ bất đẳng thức Cô si ta có:

\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\left[\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\right]^2\)

\(\Rightarrow\)Ta cần chứng minh:

\(\frac{ab+bc+ca}{ca}+ca\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)

Vì vai trò của a, b, c trong bất đẳng thức như nhau, nên không mất tính tổng quát ta giả sử \(a\ge b\ge c\)nên bất đẳng thức cuối cùng đùng. Vậy bất đẳng thức được chứng minh.

21 tháng 2 2022

sai r bạn ơi ko biết còn đòi